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Abstract

In this paper we analyze the numerical approximation of the Poisson problem in mixed
form, considering a right-hand side f ∈ Lp(Ω), with p ∈ ( 2n

n+2 , 2), where n = 2, 3 is the
dimension of Ω. The analysis of the corresponding continuous and discrete problems are
carried out by means of the classical Babuška-Brezzi theory, where the associated Galerkin
scheme is defined by Raviart–Thomas elements of lowest order combined with piecewise con-
stants. In particular, we prove well-posedness and convergence of the discrete scheme under a
quasi-uniformity condition of the mesh. Next, we apply the theory developed for the Poisson
problem to a convection-difussion problem, providing well-posedness of the continuous and
discrete problems and optimal convergence. Finally, we corroborate the theoretical results
with suitable numerical results in two and three dimensions.
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1 Introduction

This paper is concerned with the numerical approximation of the Poisson problem:

−∆u = f in Ω ⊆ Rn, n ∈ {2, 3}, u = uD on Γ := ∂Ω, (1.1)

where, given p ∈ ( 2n
n+2 , 2), the source data f is a function of Lp(Ω), uD ∈ H1/2(Γ), and Ω

is a polyhedral domain. In particular, we are interested in studying the mixed finite element
approximation of (1.1).
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Our motivation in studying the Galerkin approximation of (1.1) in mixed form arises from the
necessity of approximating the flux of certain concentration θ satisfying the convection-diffusion
equation:

−∆θ + v · ∇θ = g in Ω, θ = θD on Γ, (1.2)

where v is a given function in [H1(Ω)]n representing the velocity of a viscous fluid where the
concentration is moving, and g ∈ L2(Ω) is an external force. Certainly, the best option for
our purposes is to use a mixed method to approximate the solution of (1.2). To that end, we
introduce the further unknown σ := ∇θ in Ω, and proceed as usual to arrive at the mixed
variational formulation of (1.2): Find σ and θ in suitable spaces, such that∫

Ω
σ · τ +

∫
Ω
θ div τ = 〈τ · ν, θD〉Γ ,∫

Ω
ψ div σ −

∫
Ω
ψ(v · σ) = −

∫
Ω
gψ,

(1.3)

for all τ and ψ. Now, in order to define the spaces for the corresponding unknowns and test
functions, we notice that the first term of the first equation of (1.3) is well defined if σ and τ are
in [L2(Ω)]n. However, if σ ∈ [L2(Ω)]n, the second term of the second equation of (1.3) forces the
test function ψ to live in a space smaller than L2(Ω), and as a consequence, the term div σ to
live in a space larger than L2(Ω). Indeed, by applying Cauchy-Schwarz and Hölder inequalities
and then the continuous injection of H1(Ω) into L4(Ω) (see e.g. [18, Theorem 1.3.4]), we obtain
that there exists c(Ω), such that∣∣∣∣∫

Ω
ψ(v · σ)

∣∣∣∣ ≤ ‖ψv‖[L2(Ω)]n‖σ‖[L2(Ω)]n ≤ ‖ψ‖L4(Ω)‖v‖[L4(Ω)]n‖σ‖[L2(Ω)]n

≤ c(Ω)‖ψ‖L4(Ω)‖v‖[H1(Ω)]n‖σ‖[L2(Ω)]n .

(1.4)

According to the above, we obtain that the mixed problem (1.3) can be analyzed if the unknown
θ and the test function ψ live both in L4(Ω), whereas σ and τ live in H(div 4/3,Ω), where

H(div4/3,Ω) := {τ ∈ L2(Ω) : div τ ∈ L4/3(Ω)}.

Observe that in (1.4) we could have bounded v in the L∞-norm and keep ψ and div σ in L2(Ω).
However, since (1.2) is usually coupled with an equation modelling the velocity v (see for instance
[2, 3, 5, 8, 9, 13, 17] and the references therein), the estimate of v in the H1-norm is required to
analyze the full system.

Now, concerning the numerical approximation of the model problem (1.1) in mixed form, it is
quite surprising to realize that almost no contributions are available in the literature. Among the
few works related to this problem, we could mention the article [11] where the author focuses on
deriving the a priori error estimate in Lp, with 1 ≤ p ≤ ∞ for the mixed finite element solution
of the Poisson problem in R2, assuming that the solutions are in the standard spaces H(div) and
L2.The latter is certainly true if the data is in Ls, with s ≥ 2. Similarly, in [1] the authors focus
on proving error estimates in Lp, with 1 ≤ p ≤ ∞, for the 3D Raviart-Thomas approximation
of mixed problems.

According to the above discussion, in this paper we analyze the solvability and numerical
approximation of the mixed variational formulation of problem (1.1) with data in Lp, with
2n
n+2 < p < 2. As usual for mixed problems, we employ the classical Babuška-Brezzi theory to
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study the well-posedness of the continuous problem. Since the Lebesgue and Sobolev spaces
involved are not standard, the main drawback appears when proving the corresponding inf-sup
condition, which is overcome by using suitable auxiliary problems. Similarly, we obtain that the
associated Galerkin scheme, defined by Raviart-Thomas elements of lowest order and piecewise
constants elements defined on a quiasiuniform mesh, is well posed and convergent. It is pertinent
to note that the quasi-uniformity assumption here is required to apply an inverse estimate in
the proof of the discrete inf-sup condition. The eventual elimination of this assumption remains
an open problem.

The rest of the article is organized as follows. In Section 2 we rewrite the boundary value
problem (1.1) as a first-order set of equations, provide the associated mixed variational for-
mulation, and show that it is well posed. Then, the mixed finite element method is defined
and analyzed in Section 3. Next, in Section 4 we apply the results derived in the previous
sections to the convection-diffusion problem (1.2). Finally, several numerical results illustrating
the performance of the mixed method are presented in Section 5.

We end this section by fixing some notations. Throughout the rest of the paper, we utilize
the standard terminology for Lebesgue and Sobolev spaces, norms and seminorms, In fact, let
O be a domain in Rn, n = 2, 3, with Lipschitz boundary ∂O. For r ≥ 0 and p ∈ [1,∞], we
denote by Lp(O) and W r,p(O) the usual Lebesgue and Sobolev spaces endowed with the norms
‖ · ‖Lp(O) and ‖ · ‖W r,p(O), respectively. Note that W 0,p(O) = Lp(O). If p = 2, we write Hr(O)
in place of W r,2(O), and denote the corresponding Lebesgue and Sobolev norms by ‖ · ‖0,O and
‖ · ‖r,O, respectively. For r ≥ 0, we write | · |r,O for the Hr-seminorm. The space H1

0(O) is the
space of functions in H1(O) with vanishing trace on Γ. Also, the Hilbert space

H(div ,O) :=
{
τ ∈ [L2(O)]n : div τ ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [4] or [15] for instance).
In what follows, we employ 0 to denote a generic null vector and use C and c, with or

without subscripts, bars, tildes or hats, to denote generic positive constants independent of the
discretization parameters, which may take different values at different places.

2 The mixed variational formulation

2.1 Preliminaries

Since we are interested in using mixed finite element methods to solve (1.1), we first define the
additional unknown σ := ∇u in Ω and rewrite (1.1) as the following first–order set of equations:

σ = ∇u in Ω, −div σ = f in Ω, u = uD on Γ. (2.1)

Hence, to derive the mixed variational formulation, as usual, the first equation of (2.1) is mul-
tiplied by a test function τ and integrated by parts, considering in the process the Dirichlet
boundary condition u = uD on Γ. In turn, since f ∈ Lp(Ω), the second equation of (2.1) is
imposed weakly in the corresponding space. As a result, we arrive at the variational problem:
Find (σ, u) ∈ H(divp ,Ω)× Lq(Ω), such that:∫

Ω
σ · τ +

∫
Ω
udiv τ = 〈τ · ν, uD〉Γ ∀ τ ∈ H(divp ,Ω),∫

Ω
v div σ = −

∫
Ω
fv ∀ v ∈ Lq(Ω),

(2.2)
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where H(divp ,Ω) is the Sobolev space defined as

H(divp ,Ω) := {τ ∈ [L2(Ω)]n : div τ ∈ Lp(Ω)}, (2.3)

endowed with the norm

‖τ‖H(divp ,Ω) :=
(
‖τ‖2L2(Ω) + ‖div τ‖2Lp(Ω)

)1/2
, (2.4)

q ∈ R is the conjugate exponent of p, satisfying
1

p
+

1

q
= 1, ν is the unit outward normal to

Ω, and 〈·, ·〉Γ is the duality pairing of H−1/2(Γ), and H1/2(Γ) with respect to the L2(Γ)–inner
product.

At this point, we recall that given τ ∈ H(div ,Ω), the normal trace τ · ν is defined as the
functional in H−1/2(Γ) given by (see e.g. [14, Section 1.3.4])

〈τ · ν, ξ〉Γ =

∫
Ω
τ · ∇γ̃−1

0 (ξ) +

∫
Ω
γ̃−1

0 (ξ) div τ ∀ ξ ∈ H1/2(Γ), (2.5)

where γ̃−1
0 : H1/2(Γ) → [H1

0(Ω)]⊥ is the right inverse of the well known trace operator γ0 :
H1(Ω) → H1/2(Γ). Then, since γ̃−1

0 (ξ) ∈ H1(Ω), owing to the classical Sobolev embedding
H1(Ω) ⊂ Lq(Ω), the last term in (2.5) is still well defined if div τ ∈ Lp(Ω). This implies that
τ · ν ∈ H−1/2(Γ) for all τ ∈ H(divp ,Ω), and as a result, the right-hand side of the first equation
of (2.2) is well defined. Moreover, it readily follows that there exists c(Ω) > 0, depending on
|Ω|, such that

| 〈τ · ν, ξ〉 | ≤ c(Ω)‖τ‖H(divp ,Ω)‖ξ‖1/2,Γ, ∀ τ ∈ H(divp ,Ω), ∀ ξ ∈ H1/2(Γ). (2.6)

Now, we introduce some notations and previous results that will serve for the forthcoming
analysis. We begin by defining the sign function sgn, given by

sgn(v) =

{
1 if v ≥ 0,
−1 if v < 0,

for any scalar function v. It is quite clear that for a given v, there holds

v sgn(v) = |v|.

In addition, in the sequel we will make use of the well known Hölder, Poincaré and Sobolev
inequalities, given respectively by∫

Ω
|fg| ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω), ∀ f ∈ Lp(Ω), ∀ g ∈ Lq(Ω), with

1

p
+

1

q
= 1, (2.7)

‖w‖1,Ω ≤ CP |w|1,Ω ∀w ∈ H1
0(Ω) (2.8)

and
‖w‖Lr(Ω) ≤ CSob‖w‖1,Ω ∀w ∈ H1(Ω) , r ≥ 1, (2.9)

with CP > 0 and CSob > 0 depending only on |Ω|.
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2.2 Analysis of the continuous problem

In what follows, we prove existence and uniqueness of solution of problem (2.2). To that end,
and for the sake of simplicity, we now write our problem in the classical variational setting and
state the main properties of the bilinear forms involved. We start by defining the spaces

H := H(divp ,Ω), Q := Lq(Ω),

and the product norm
‖(τ, v)‖H×Q := {‖τ‖2H + ‖v‖2Q}1/2,

where ‖·‖H := ‖·‖H(divp ,Ω) and ‖·‖Q := ‖·‖Lq(Ω). Then, defining the bilinear forms a : H×H→ R,
b : H×Q→ R and the functionals F : H→ R and G : Q→ R, given respectively by

a(σ, τ) :=

∫
Ω
σ · τ, b(τ, v) :=

∫
Ω
v div τ, F (τ) := 〈τ · ν, uD〉Γ , G(v) := −

∫
Ω
fv,

(2.10)
the variational formulation (2.2) reads: Find (σ, u) ∈ H×Q, such that

a(σ, τ) + b(τ, u) = F (τ) ∀ τ ∈ H,

b(σ, v) = G(v) ∀ v ∈ Q.
(2.11)

Notice that, owing to the Hölder inequality (2.7), the bilinear forms a and b are bounded:

|a(σ, τ)| ≤ ‖σ‖H‖τ‖H ∀σ ∈ H, ∀ τ ∈ H,

|b(τ, v)| ≤ ‖v‖Q‖τ‖H ∀ τ ∈ H, ∀ v ∈ Q.
(2.12)

In turn, from (2.6) and the Hölder inequality (2.7), it readily follows that F and G are bounded:

|F (τ)| = | 〈τ · ν, uD〉Γ | ≤ c(Ω)‖uD‖1/2,Γ‖τ‖H ∀ τ ∈ H,

|G(v)| ≤ ‖f‖Lp(Ω)‖v‖Q ∀ v ∈ Q.
(2.13)

Throughout the rest of this section we follow the analysis suggested by the classical Babuška-
Brezzi theory to conclude that (2.11) is well posed. This requires the inf-sup condition of b and
the ellipticity of a on the kernel of b. We start with the following lemma establishing that b
satisfies the required inf-sup condition.

Lemma 2.1 There exists β > 0, such that

sup
τ∈H\0

b(τ, v)

‖τ‖H
≥ β‖v‖Q ∀ v ∈ Q.

Proof. Given v ∈ Q, we let τ̃ = −∇z, with z ∈ H1
0(Ω) being the unique solution of the variational

problem ∫
Ω
∇z · ∇w =

∫
Ω

sgn (v)|v|q−1w ∀w ∈ H1
0(Ω). (2.14)

Notice that ∫
Ω
|sgn (v)|v|q−1|p =

∫
Ω
|v|p(q−1) =

∫
Ω
|v|q < +∞, (2.15)
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which implies that sgn (v)|v|q−1 ∈ Lp(Ω). Then, since p ∈ ( 2n
n+2 , 2), it is well-known that

problem (2.14) is well posed. In turn, from (2.14) it readily follows that div τ̃ = sgn (v)|v|q−1.
As a consequence, we obtain that τ̃ ∈ H and

‖div τ̃‖Lp(Ω) = ‖|v|q−1‖Lp(Ω). (2.16)

On the other hand, utilizing inequalities (2.7), (2.8) and (2.9), from (2.14) with w = z, we
obtain

‖τ̃‖20,Ω ≤ ‖|v|q−1‖Lp(Ω)‖z‖Q ≤ CSob‖|v|q−1‖Lp(Ω)‖z‖1,Ω

≤ CPCSob‖|v|q−1‖Lp(Ω)|z|1,Ω = CPCSob‖|v|q−1‖Lp(Ω)‖τ̃‖0,Ω,
from which,

‖τ̃‖0,Ω ≤ CPCSob‖|v|q−1‖Lp(Ω). (2.17)

In this way, from (2.16) and (2.17), it follows that

‖τ̃‖H ≤ (1 + C2
PC

2
Sob)

1/2‖|v|q−1‖Lp(Ω),

which together to the fact that

‖|v|q−1‖Lp(Ω) =

(∫
Ω

(|v|q−1)p
) 1

p

=

(∫
Ω
|v|q
) q−1

q

= ‖v‖q−1
Q ,

implies
‖τ̃‖H ≤ (1 + C2

PC
2
Sob)

1/2‖v‖q−1
Q . (2.18)

Therefore, recalling that v sgn (v) = |v|, from the definition of τ̃ and (2.18), we obtain

sup
τ∈H\0

b(τ, v)

‖τ‖H
≥ b(τ̃ , v)

‖τ̃‖H
=

∫
Ω
v div τ̃

‖τ̃‖H
≥ (1 + C2

PC
2
Sob)

−1/2

∫
Ω
|v| |v|q−1

‖v‖q−1
Q

= (1 + C2
PC

2
Sob)

−1/2
‖v‖qQ
‖v‖q−1

Q

= (1 + C2
PC

2
Sob)

−1/2‖v‖Q,

(2.19)

which concludes the proof with β = (1 + C2
PC

2
Sob)

−1/2 > 0. �

We now let V be the kernel of b, that is

V := {τ ∈ H : b(τ, v) = 0, ∀ v ∈ Q} =

{
τ ∈ H :

∫
Ω
v div τ = 0, ∀ v ∈ Q

}
. (2.20)

Observe that if τ ∈ V , then taking v = sgn (div τ)|div τ |p−1, which is clearly an element in Q
since ∫

Ω
|v|q =

∫
Ω

∣∣sgn (div τ)|div τ |p−1
∣∣q =

∫
Ω
|div τ |(p−1)q =

∫
Ω
|div τ |p < +∞,

it follows that

0 =

∫
Ω
v div τ =

∫
Ω

sgn (div τ)|div τ |p−1div τ =

∫
Ω
|div τ |p = ‖div τ‖pLp(Ω),

and then div τ ≡ 0 in Lp(Ω). In this way,

V := {τ ∈ H : div τ ≡ 0 in Ω} .

The following lemma establishes the ellipticity of a on V .
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Lemma 2.2 There exists α > 0, such that

a(τ, τ) ≥ α‖τ‖H ∀ τ ∈ V (2.21)

Proof. Given τ ∈ V , from the definition of V , it readily follows that

a(τ, τ) = ‖τ‖20,Ω = ‖τ‖2H,

which implies (2.21) with α = 1. �

The well-posedness of the continuous formulation (2.11) is provided now.

Theorem 2.3 Let f ∈ Lp(Ω), with p ∈
(

2n
n+2 , 2

)
. Then there exists a unique (σ, u) ∈ H × Q

solution to (2.11). In addition, there exists C > 0, independent of the solution, such that

‖(σ, u)‖H×Q ≤ C(‖f‖Lp(Ω) + ‖uD‖1/2,Γ). (2.22)

Proof. Thanks to Lemmata 2.1 and 2.2 and the fact that the right-hand sides F and G define
linear functionals on H and Q, respectively, the proof follows from a straightforward application
of the Babuška–Brezzi theory (see e.g. [4, Chapter II] or [14, Chapter 2]). �

3 The mixed finite element scheme

3.1 Preliminaries

Let {Th}h>0 be a regular family of triangulations of Ω by triangles T in R2 or tetrahedra in R3

of diameter hT such that h := max{hT : T ∈ Th}. Then, for each T ∈ Th, we let RT0(T ) be the
local Raviart-Thomas of lowest order, i.e.

RT0(T ) := [P0(T )]n ⊕ P0(T )x,

where x := (x1, . . . , xn)t is a generic vector of Rn and P0(T ) is the space of constant functions
on T . In general, given a non–negative integer k and a subset of Rn S, we let Pk(S) be the
space of polynomials defined on S of degree ≤ k. Hence, defining the following finite element
subspaces to approximate the unknowns σ ∈ H and u ∈ Q:

Hh := {τh ∈ H : τh|T ∈ RT0(T ), ∀T ∈ Th} ⊆ H,

Qh := {vh ∈ Q : vh|T ∈ P0(T ), ∀T ∈ Th} ⊆ Q,
(3.1)

the conforming Galerkin scheme for (2.11) reads: Find (σh, uh) ∈ Hh ×Qh, such that

a(σh, τh) + b(τh, uh) = F (τh) ∀ τh ∈ Hh,

b(σh, vh) = G(vh) ∀ vh ∈ Qh,
(3.2)

where a, b, F and G are the bilinear forms and functionals defined in (2.2).

Next, in Section 3.2 we follow closely the analysis suggested by [14, Section 4.2] to prove
that problem (3.2) is well posed by means of the discrete Babuška-Brezzi theory. To that end,
we first need to establish some previous results and definitions.
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As we will see later in Lemma 3.1, in order to prove the discrete inf-sup condition for b we
will require the following inverse inequality

‖zh‖0,Ω ≤ Ch
n
2
−n

p ‖zh‖Lp(Ω) ∀ zh ∈ Qh, (3.3)

which is certainly true for quasi-uniform meshes (see e.g. [12, Corollary 1.141]) . Therefore,
from now on we assume that for each h > 0, Th is quasi-uniform, which means that there exists
c̃ > 0, independent of h, such that

min
T∈Th

hT ≥ c̃h ∀h > 0. (3.4)

We now introduce the approximation properties of the finite element subspaces introduced
above. To that end we first define the space

Z := {τ ∈ H(div ,Ω) : τ |T ∈ [H1(T )]n, ∀T ∈ Th}.

Then, we let
Πh : H(div ,Ω) ∩ Z → Hh, (3.5)

be the usual Raviart-Thomas interpolator operator, which given τ ∈ H(div ,Ω) ∩ Z, is charac-
terized by the identity∫

e
(Πh(τ) · ν) ξ =

∫
e
(τ · ν) ξ ∀ ξ ∈ P0(e), ∀ edge e of Th. (3.6)

In addition, the corresponding commuting diagram property yields

div (Πh(τ)) = Ph(div τ) ∀ τ ∈ H(div ,Ω) ∩ Z, (3.7)

where Ph : L2(Ω)→ Qh is the corresponding orthogonal projection, which satisfies the following
error estimate (see [12, Section 1.6.3]): For each t ∈ [0, 1] and for each w ∈ Ht(Ω), there holds

‖w − Ph(w)‖Lr(Ω) ≤ Cht‖w‖W 1,r(Ω), 1 ≤ r ≤ ∞. (3.8)

In turn, given r > 2n
n+2 , it can be proved that there exists C > 0, independent of h, such that

for each τ ∈ [W 1,r(T )]n, there holds

‖τ −Πh(τ)‖[Lr(T )]n ≤ C
h2
T

ρT
|τ |[W 1,r(T )]n , (3.9)

and for each τ ∈ [W 1,r(T )]n, with div τ ∈W 1,r(T ),

‖div τ − div (Πh(τ))‖Lr(T ) ≤ ChT |div τ |W 1,r(T ), (3.10)

where ρT is the diameter of the largest sphere contained in T (see e.g. [12, Theorem 1.114]).
Furthermore, owing to the estimates (3.9) and (3.10), and the fact that the mesh is assumed to
be regular, it is not difficult see that the following global estimate holds

‖τ −Πh(τ)‖[Lr(Ω)]n + ‖div τ − div (Πh(τ))‖Lr(Ω) ≤ ch
{
|τ |[W 1,r(Ω)]n + |div τ |W 1,r(Ω)

}
, (3.11)

for all τ ∈ [W 1,r(Ω)]n, with div τ ∈W 1,r(Ω) and for all r > 2n
n+2(see e.g. [12, Corollary 1.115]).
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3.2 Analysis of the discrete problem

In this section we apply the discrete Babuška-Brezzi theory to prove the well-posedness of the
Galerkin scheme (3.2). We start by establishing the discrete inf-sup condition for b.

Lemma 3.1 Let p ∈ ( 2n
n+2 , 2), with n = 2, 3. Assume that Th is a quasi-uniform triangulation

of Ω. Then, there exists β∗ > 0, independent of h, such that

sup
τh∈Hh
τh 6=0

b(τh, vh)

‖τh‖H
≥ β∗‖vh‖Q ∀ vh ∈ Qh.

Proof. Given vh ∈ Qh, we set

ṽh =

{
sgn (vh)|vh|q−1 in Ω,

0 in B\Ω,

where B ⊆ Rn is an open and bounded convex set containing Ω. Notice that sgn (vh)|vh|q−1 ∈ Qh

since vh is a piecewise constant function.
Next, let τ̂ = −∇ϕ|Ω, with ϕ ∈ H1

0(B) being the unique solution of the variational problem∫
B
∇ϕ · ∇w =

∫
B
ṽhw =

∫
Ω

sgn (vh)|vh|q−1w ∀w ∈ H1
0(B). (3.12)

Similarly to the proof of Lemma 2.1, we easily obtain

‖τ̂‖0,Ω ≤ C1‖|vh|q−1‖Lp(Ω) and div τ̂ = sgn (vh)|vh|q−1. (3.13)

In addition, since ṽh ∈ L2(B) and B is convex, it is well known that ϕ ∈ H2(B), and satisfies
the estimate

‖ϕ‖H2(B) ≤ C̃‖ṽh‖0,B = C̃‖|vh|q−1‖0,Ω.

It readily follows that τ̂ ∈ H1(Ω). Moreover, combining the latter estimate with the inverse
inequality (3.3), we obtain

|τ̂ |1,Ω ≤ ‖ϕ‖H2(B) ≤ C̃‖|vh|q−1‖0,Ω ≤ C2h
n
2
−n

p ‖|vh|q−1‖Lp(Ω). (3.14)

Now, we let τ̂h = Πh(τ̂). It is not difficult to see that the commutative diagram (3.7), the
identity on the right-hand side of (3.13), and the fact that sgn (vh)|vh|q−1 ∈ Qh imply

div τ̂h = Ph(div τ̂) = Ph(sgn (vh)|vh|q−1) = sgn (vh)|vh|q−1. (3.15)

In turn, utilizing the triangle inequality, and the estimate (3.9), with r = 2, we obtain

‖τ̂h‖0,Ω ≤ ‖τ̂ − τ̂h‖0,Ω + ‖τ̂‖0,Ω ≤ Ch|τ̂ |1,Ω + ‖τ̂‖0,Ω,

which together to the inequalities in (3.13) and (3.14), implies

‖τ̂h‖0,Ω ≤ {CC2h
1+n

2
−n

p + C1}‖|vh|q−1‖Lp(Ω) (3.16)

Hence, noting that 1 + n
2 −

n
p > 0 and ‖|vh|q−1‖Lp(Ω) = ‖vh‖q−1

Q , from (3.15) and (3.16), we get

‖τ̂h‖H =
{
‖τ̂h‖20,Ω + ‖div (τ̂h)‖2Lp(Ω)

}1/2 ≤ ĉ‖vh‖q−1
Q , (3.17)
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with ĉ > 0 independent of h.
Therefore, from (3.15) and (3.17), we obtain

sup
τh∈Hh
τh 6=θ

b(τh, vh)

‖τh‖H
≥ b(τ̂h, vh)

‖τ̂h‖H
≥ 1

ĉ

∫
Ω
vh sgn (vh)|vh|q−1

‖vh‖q−1
Q

=
1

ĉ

‖vh‖qQ
‖vh‖q−1

Q

=
1

ĉ
‖vh‖Q. (3.18)

which concludes the proof with β∗ = 1
ĉ . �

Remark 3.2 Observe that in the proof of Lemma 3.1 above we are strongly using the fact that
vh is a piecewise constant function. In fact, if vh is a piecewise polynomial function of degree k,
with k ≥ 1, |vh|q−1 is not necessarily in the same discrete space where vh lives and (3.15) fails.

We now look at the discrete kernel of b, which is defined by

Vh := {τh ∈ Hh : b(τh, vh) = 0, ∀ vh ∈ Qh} .

Since, div Hh ⊆ Qh, it readily follows that

Vh = {τh ∈ Hh : div τh = 0 in Ω} . (3.19)

The coerciveness of a in Vh is shown next.

Lemma 3.3 There exists α∗ > 0, independent of h, such that

a(τh, τh) ≥ α∗‖τh‖2H ∀ τh ∈ Vh.

Proof. According to the definition of Vh, the proof is straightforward with α∗ = 1. �

Owing to Lemmata 3.1 and 3.3, we are now in position of establishing the solvability and
stability of the Galerkin scheme (3.2), and the corresponding a priori error estimate.

Theorem 3.4 Let p ∈ ( 2n
n+2 , 2) and f ∈ Lp(Ω). Assume that Th is a quasi-uniform triangulation

of Ω. Then, there exists a unique (σh, uh) ∈ Hh ×Qh solution to (3.2). In addition, there exist
C1, C2 > 0, independent of h, such that

‖(σh, uh)‖H×Q ≤ C1

{
‖f‖Lp(Ω) + ‖uD‖1/2,Γ

}
(3.20)

‖(σ − σh, u− uh)‖H×Q ≤ C2

{
inf

τh∈Hh

‖σ − τh‖H + inf
vh∈Qh

‖u− vh‖Q
}

(3.21)

where (σ, u) ∈ H×Q is the unique solution (2.11).

Proof. It follows from Lemmata 3.1 and 3.3, and a direct application of the discrete Babuška-
Brezzi theory. �

We now provide the rate of convergence of our mixed finite element method.
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Theorem 3.5 Let p ∈ ( 2n
n+2 , 2) and f ∈ Lp(Ω). Assume that Th is a quasi-uniform triangulation

of Ω. Let (σ, u) ∈ H × Q and (σh, uh) ∈ Hh × Qh be the unique solutions of the continuous
and discrete mixed formulations (2.11) and (3.2), respectively. Assume that σ ∈ [H1(Ω)]n,
div σ ∈W 1,p(Ω) and u ∈W 1,q(Ω). Then, there exists C > 0, independent of h, such that

‖(σ, u)− (σh, uh)‖H×Q ≤ Ch
{
‖σ‖1,Ω + ‖div σ‖W 1,p(Ω) + ‖u‖W 1,q(Ω)

}
(3.22)

Proof. First, from the approximation property (3.8) with r = q and t = 1, we easily obtain

‖u− Ph(u)‖Q ≤ Ch‖u‖W 1,q(Ω). (3.23)

Similarly, from (3.9) and (3.10), with r = 2 and r = p, respectively, we get

‖σ −Πh(σ)‖0,Ω ≤ Ch‖σ‖1,Ω and ‖div σ − div (Πh(σ))‖Lp(Ω) ≤ Ch‖div σ‖W 1,p(Ω). (3.24)

In this way, (3.22) readily follows from (3.23), (3.24) and the Céa estimate (3.21). �

4 Analysis of a convection-difussion problem

In this section we address the solvability and numerical approximation of the convection-diffusion
problem (1.3). To that end, we first notice that the mixed structure of (1.3) is not symmetric
because of the convective term. Then, in order to analyze the corresponding continuous and
discrete problems, as well as the convergence of the associated Galerkin scheme, we will require a
suitable generalization of the classical Babuška-Brezzi theory. This generalization is established
next.

4.1 A generalization of the Babuška-Brezzi theory

Let H and Q be Hilbert spaces, and let Hh and Qh be finite dimensional subspaces of H and
Q, respectively. Moreover, let a(·, ·) : H × H → R, b(·, ·) : H × Q → R and d(·, ·) : H × Q → R
be continuous bilinear forms, with continuity constants ‖a‖, ‖b‖ and ‖d‖, and let F ∈ H′ and
G ∈ Q′. In what follows we establish sufficient conditions to guarantee the well-posedness of the
continuous and discrete problems:
Find (σ, u) ∈ H×Q, such that

a(σ, τ) + b(τ, u) = F (τ) ∀ τ ∈ H,

b(σ, v) + d(σ, v) = G(v) ∀ v ∈ Q,
(4.1)

Find (σh, uh) ∈ Hh ×Qh, such that

a(σh, τh) + b(τh, uh) = F (τh) ∀ τ ∈ Hh,

b(σh, vh) + d(σh, vh) = G(vh) ∀ v ∈ Qh.
(4.2)

We start by introducing the following hypotheses on a and b:

(H.1) There exists α > 0, such that

a(τ, τ) ≥ α‖τ‖2H, ∀ τ ∈ K := {τ ∈ H : b(τ, v) = 0, ∀ v ∈ Q}.
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(H.2) There exists β > 0, such that

sup
τ∈H\0

b(τ, v)

‖τ‖H
≥ β‖v‖Q ∀ v ∈ Q.

(H.3) There exists α∗ > 0, independent of discretization parameter h, such that

a(τ, τ) ≥ α∗‖τ‖2Hh
, ∀ τ ∈ Kh := {τ ∈ Hh : b(τ, v) = 0, ∀ v ∈ Qh}.

(H.4) There exists β∗ > 0, independent of of discretization parameter h, such that

sup
τ∈Hh\0

b(τ, v)

‖τ‖Hh

≥ β∗‖v‖Qh
∀ v ∈ Qh.

Observe that the hypotheses above are nothing but the conditions of the classical Babuška-Brezzi
theory.

Under a further assumption on ‖d‖ it is possible to obtain the well-posedness of (4.1) and
(4.2), and the corresponding a priori error estimate. In fact, we have the following theorems.
For their proofs we refer to the forthcoming paper [7].

Theorem 4.1 Assume that a and b satisfy hypotheses (H.1) and (H.2). Assume further that

Cwp‖d‖ ≤
1

2
, (4.3)

with

Cwp :=
1

β
+

2‖a‖
αβ

+
‖a‖
β2

+
‖a‖2

αβ2
. (4.4)

Then, there exists a unique (σ, u) ∈ H × Q solution to (4.1). In addition, there exists C > 0,
depending only on ‖a‖, ‖d‖, α and β, such that

‖σ‖H + ‖u‖Q ≤ C(‖F‖H′ + ‖G‖Q′). (4.5)

Theorem 4.2 Assume that a and b satisfy hypotheses (H.3) and (H.4). Assume further that

C∗wp‖d‖ ≤
1

2
, (4.6)

with

C∗wp :=
1

β∗
+

2‖a‖
α∗β∗

+
‖a‖
β∗2

+
‖a‖2

α∗β∗2
. (4.7)

Then, there exists a unique (σh, uh) ∈ Hh ×Qh solution to (4.2) Moreover, there exists C∗ > 0,
depending only on ‖a‖, ‖d‖, α∗ and β∗, such that

‖σh‖H + ‖uh‖Q ≤ C∗(‖F |Hh
‖H′h + ‖G|Qh

‖Q′h) (4.8)

Theorem 4.3 Let (σ, u) ∈ H × Q and (σh, uh) ∈ Hh × Qh be the unique solutions of problems
(4.1) and (4.2), respectively. Assume that

max{Cwp, C∗wp}‖d‖ ≤
1

2
, (4.9)

with Cwp > 0 and C∗wp > 0 be the constants defined in (4.4) and (4.7), respectively. Then, there
exists Ccea > 0, depending only on ‖a‖, ‖b‖, α∗ and β∗, such that

‖σ − σh‖H + ‖u− uh‖Q ≤ Ccea
{

inf
τh∈Hh

‖σ − τh‖H + inf
vh∈Qh

‖u− vh‖Q
}
. (4.10)
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4.2 Analysis of the continuous convection-diffusion problem

Let us consider the bilinear forms

a(σ, τ) :=

∫
Ω
σ · τ, b(τ, ψ) :=

∫
Ω
ψ div τ, d(τ, ψ) := −

∫
Ω

(v · τ)ψ,

and the functionals

F (τ) := 〈τ · ν, θD〉Γ and G(ψ) := −
∫

Ω
gψ.

Then, the convection-diffusion (1.3) reads: Find (σ, θ) ∈ H(div 4/3,Ω)× L4(Ω), such that

a(σ, τ) + b(τ, θ) = F (τ),

b(σ, ψ) + d(σ, ψ) = G(ψ),
(4.11)

for all (τ, ψ) ∈ H(div 4/3,Ω)× L4(Ω).
It is clear that the structure of (4.11) fits into the framework of the theory introduced in

Section 4. Therefore, in what follows we apply Theorem 4.1 to prove the well-posedness of
(4.11). To that end, we first observe that the forms a, b and d are continuous with continuity
constants

‖a‖ = 1, ‖b‖ = 1 and ‖d‖ = CSob‖v‖1,Ω, (4.12)

where CSob > 0 is the positive constant of the Sobolev inequality (2.9). In addition, owing to
(2.6) and the fact that ‖ψ‖0,Ω ≤ |Ω|1/2‖ψ‖L4(Ω), for all ψ ∈ L4(Ω), it is easy to see that F and
G are bounded:

|F (τ)| ≤ c(Ω)‖θD‖1/2,Γ‖τ‖H(div 4/3,Ω) and |G(ψ)| ≤ |Ω|1/2‖g‖0,Ω‖ψ‖L4(Ω)

In turn, by applying Lemmata 2.1 and 2.2 with p = 4/3 and q = 4, we readily obtain that a and
b satisfy hypotheses (H.1) and (H.2) with β > 0 established in (2.19) and ellipticity constant
α = 1.

According to the discussion above, we now can establish the well-posedness of (4.11).

Theorem 4.4 Assume that
CSob(3β + 2)

β2
‖v‖1,Ω ≤

1

2
. (4.13)

Then, there exists a unique (σ, θ) ∈ H(div 4/3,Ω)× L4(Ω) solution to (4.11). In addition, there
exists C > 0, independent of the solution, such that

‖σ‖H(div 4/3,Ω) + ‖θ‖L4(Ω) ≤ C(‖θD‖1/2,Γ + ‖g‖0,Ω). (4.14)

Proof. Having verified hypotheses (H.1) and (H.2) the proof is a straightforward application of
Theorem 4.1. �
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4.3 Finite element discretization of the convection-diffusion problem

Let Hh ⊆ H(div 4/3,Ω) and Qh ⊆ L4(Ω) be the finite element spaces defined in (3.1), that is

Hh := {τh ∈ H : τh|T ∈ RT0(T ), ∀T ∈ Th} ⊆ H,

Qh := {vh ∈ Q : vh|T ∈ P0(T ), ∀T ∈ Th} ⊆ Q,

where Th is a quiasiuniform mesh. Then, the Galerkin scheme of (4.11) reads: Find (σh, θh) ∈
Hh ×Qh, such that

a(σh, τh) + b(τh, θh) = F (τh),

b(σh, ψh) + d(σh, ψh) = G(ψh),
(4.15)

for all (τh, ψh) ∈ Hh ×Qh.
Similarly to the continuous case, we observe that owing to Lemmata 3.1 and 3.3 with p = 4/3

and q = 4, the bilinear forms a and b satisfy hypotheses (H.3) and (H.4) with α = 1 and β∗ > 0
be the constant established in (3.18).

The following theorem establishes the well-posedness of the Galerkin scheme (4.15) and the
corresponding a priori estimate.

Theorem 4.5 Assume that

CSob max

{
(3β + 2)

β2
,
(3β∗ + 2)

β∗2

}
‖v‖1,Ω ≤

1

2
. (4.16)

Then, there exists a unique (σh, θh) ∈ Hh × Qh solution to (4.15). In addition, there exists
C1, C2 > 0, independent of h, such that

‖σh‖H(div 4/3,Ω) + ‖θh‖L4(Ω) ≤ C1(‖θD‖1/2,Γ + ‖g‖0,Ω) (4.17)

and

‖σ − σh‖H(div 4/3,Ω) + ‖θ − θh‖L4(Ω) ≤ C2

{
inf

τh∈Hh

‖σ − τh‖H(div 4/3,Ω) + inf
ψh∈Qh

‖θ − ψh‖L4(Ω)

}
.

(4.18)

Proof. Since a and b satisfy hypotheses (H.3) and (H.4) the proof follows from a direct appli-
cation of Theorems 4.2 and 4.3. �

The following theorem provides the theoretical rate of convergence of the Galerkin scheme
(4.15), under suitable regularity assumptions on the exact solution.

Theorem 4.6 Let (σ, θ) ∈ H(div 4/3,Ω)×L4(Ω) and (σh, θh) ∈ Hh×Qh be the unique solutions

of (4.11) and (4.15), respectively. Assume that σ ∈ H1(Ω), div σ ∈W 1,4/3(Ω) and θ ∈W 1,4(Ω).
Then there exists C > 0, independent of h, such that

‖σ − σh‖H(div 4/3,Ω) + ‖θ − θh‖L4(Ω) ≤ Ch
{
‖σ‖1,Ω + ‖div σ‖W 1,4/3(Ω) + ‖θ‖W 1,4(Ω)

}
. (4.19)

Proof. The proof follows from the Céa estimate (4.18) and Theorem 3.5. �
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5 Numerical results

In this section we corroborate numerically the theory developed for the Poisson problem as
applied to the convection-diffusion problem (1.2). More precisely, in what follows we present
two examples illustrating the performance of the Galerkin scheme (4.15) on a set of quasi-uniform
triangulations. Our implementation is based on a FreeFem++ code (see [16]), in conjunction
with the direct linear solver UMFPACK (see [10]).

We now introduce some additional notations. The individual errors are denoted by:

e(σ) := ‖σ − σh‖H(div 4/3,Ω) and e(θ) := ‖θ − θh‖L4(Ω) .

Also, we let r(σ) and r(θ) be the experimental rates of convergence given by

r(σ) :=
log(e(σ)/e′(σ))

log(h/h′)
and r(θ) :=

log(e(θ)/e′(θ))

log(h/h′)
,

where h and h′ denote two consecutive meshsizes with errors e and e′.

In Example 1 we verify the theory for the two dimensional case. To that end, we choose the
domain Ω := (0, 1)2, the vector field v(x1, x2) := (ex1 , ex2)t and take g and θD so that the exact
solution is given by

σ(x1, x2) :=

 2x1 sin(πx2)

πx2
1 cos(πx2)

 , θ(x1, x2) := x2
1 sin(πx2) .

Next, in Example 2 we assess the capability of a 3D implementation of the Galerkin scheme
(4.15). Here, we choose the domain Ω := (0, 1)3, the vector field v(x1, x2, x3) := (x2

1, x
2
2, 0)t and

take g and θD so that the exact solution is given by

σ(x1, x2, x3) :=

 x2(x3 + ex3+x1x2)
x1(x3 + ex3+x1x2)
ex3+x1x2 + x1x2

 e2x1+x2 , θ(x1, x2, x3) := ex3+x1x2 + x1x2x3 .

In Table 5.1 below, we summarize the convergence history for a sequence of quasi-uniform
triangulations. We observe there that the rate of convergence O(h) predicted by Theorem 4.5
is attained in all the cases. Similar results can be seen in Table 5.2 for the 3D case. Next, in
figures 5.1 and 5.2 we provide the graphics of the approximate and exact solutions of Example
2. In Figure 5.1 we display the isosurface of θh (to the left) and we compare it with its exact
counterpart (to the right). In addition, in Figure 5.2 we display the components of the vector
field σh (top) and we compare them with their exact counterpart (bottom). Here, we display
the section of the cube below the plane x1 − x2 + x3 = 0.5. All the graphics above were
computed with N = 595968 degrees of freedom. We observe there that the mixed finite element
method provide very accurate approximations to the unknowns. In addition, we notice that the
election of v in both cases leads to a good behaviour of the numerical method. It is pertinent to
mention here that the actual influence of assumption (4.16) on the performance of the numerical
approximation of (4.11) in both examples is not analyzed in this work since it escapes from the
original purposes of this paper and remains an open problem to be addressed in the future.
However, there is numerical evidence showing that when having non-symmetric structures as
the one presented in (4.1), the associate global matrix of the system becomes ill-posed as ‖d‖ is
too big (see [6, Section 7, Example 1]).
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N h e(σ) r(σ) e(θ) r(θ)

1512 0.1074 0.2124 – 0.0287 –
6124 0.0501 0.1042 0.9348 0.0137 0.9691
24273 0.0265 0.0516 1.1012 0.0069 1.0789
98206 0.0131 0.0257 0.9878 0.0034 0.9887
387402 0.0075 0.0128 1.2509 0.0017 1.2793
1541734 0.0039 0.0065 1.0506 0.0009 1.0384

Table 5.1: Example 1: Degrees of freedom, meshsizes, errors, rates of convergence RT0 − P0

approximation of the convection-diffusion problem (4.11) in 2D .

N h e(σ) r(σ) e(θ) r(θ)

168 0.7071 1.2336 – 0.8134 –
1248 0.3536 0.6276 0.9749 0.4231 0.9428
9600 0.1768 0.3154 0.9928 0.2137 0.9854
75264 0.0884 0.1579 0.9980 0.1071 0.9963
595968 0.0442 0.0790 0.9995 0.0536 0.9991

Table 5.2: Example 2: Degrees of freedom, meshsizes, errors, rates of convergence RT0 − P0

approximation of the convection-diffusion problem (4.11) in 3D .
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Figure 5.1: Example 2: isosurfaces of θh (left) and θ (right), with N = 595968.
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0 8 0 8 1 8.1

0 8 0 8 1 8.1

Figure 5.2: Example 2: σ1,h, σ3,h, σ3,h (from the left to the right, at the top) and σ1, σ2, σ3

(from the left to he right, at the bottom) with N = 595968.
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