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Abstract

We construct sets of basis functions of the space of divergence-free finite ele-
ments of Raviart–Thomas type in a general topological domain. Two different
methods are presented: one using a suitable selection of the curls of Nédélec
finite elements, the other based on an efficient algebraic procedure. The first
approach looks to be more useful for numerical approximation, as the basis
functions have a localized support.

1. Introduction

The Hilbert space H(div; Ω) = {v ∈ (L2(Ω))3 | div v ∈ L2(Ω)} furnishes a
natural framework for the variational formulation of several elliptic problems.
A couple of examples are the Darcy problem{

u +K∇p = g
div u = 0 ,

(1)

or the saddle point formulation of the second order problem div(A∇p) = f ,
which is given by {

u−A∇p = 0
div u = f .

(2)

Note that (2) can be expressed in the form (1) by finding an auxiliary unknown
uf such that div uf = f , and then solving for w = u−uf . Let us focus on (1),
and, for the sake of exposition, assume that the boundary condition is given by
p = 0 on ∂Ω.

An integration by parts leads to the standard mixed variational formulation{ ∫
Ω
K−1u · v −

∫
Ω
p div v =

∫
Ω
K−1g · v∫

Ω
q div u = 0 ,

(3)

where u,v ∈ H(div; Ω) and p, q ∈ L2(Ω).
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However, it is worth noting that an even simpler variational formulation is
given by ∫

Ω

K−1u · v =

∫
Ω

K−1g · v , (4)

where u,v ∈ H0(div; Ω) = {v ∈ H(div; Ω) | div v = 0 in Ω}.
The numerical approximation by the finite element method of problems like

(3) is a well-known option (see, e.g., Boffi, Brezzi and Fortin [1]). Instead, the
numerical approximation of problem (4) has not been frequently considered, as
a conforming approximation of H0(div; Ω) presents some difficulties, essentially
related to the divergence-free constraint.

The delicate point is in fact the construction of a basis for the space of
divergence-free finite elements; in the three-dimensional case, to our knowl-
edge this has been done by Hecht [2], Dubois [3] and Scheichl [4] for a simply-
connected domain with a non-connected boundary, and by Rapetti, Dubois and
Bossavit [5] for a κ-fold torus; see also some related results by Gustafson and
Hartman [6], [7] concerned with hydrodynamics problems.

Due to the importance of topological issues in many problems of mathemat-
ical physics (e.g., in fluid dynamics, or in electromagnetism) in this paper we
present two simple and explicit constructions of a basis for divergence-free finite
elements in a domain with an arbitrary topology. The first construction per-
forms an accurate selection of the curls of the Nédélec finite elements, based on
an algorithm proposed by Hiptmair and Ostrowski [8] (and extended by Alonso
Rodŕıguez et al. [9]) which furnishes a suitable basis of the first homology group
H1(Ω,Z) of Ω. The second construction is grounded on a more direct algebraic
procedure, which however leads to basis functions with non-localized support.

Having available a set of finite element basis functions can furnish an efficient
tool for the numerical approximation of (1) or (2), or else of other boundary
value problems, for instance the curl–div system curl u = J

div u = g
u× ν = a (or u · ν = b) ,

(5)

which, after having determined a vector field u? such that div u? = g, can be
formulated in the space H0(div; Ω). This will be the subject of a forthcoming
paper.

2. Notation and preliminary results

Let Ω be a bounded polyhedral domain of R3 with Lipschitz boundary and let
(∂Ω)0, . . . , (∂Ω)p be the connected components of ∂Ω, (∂Ω)0 being the external
one. Consider a tetrahedral triangulation Th = (V,E, F, T ) of Ω. Here V is the
set of vertices, E the set of edges, F the set of faces and T the set of tetrahedra
of Th.

We consider the following spaces of finite elements (for a complete presenta-
tion, see Monk [10]). The space Lh of continuous piecewise-linear finite elements:

2



its dimension is nv, the number of vertices in Th. The space Nh of Nédélec edge
elements of degree 1: its dimension is ne, the number of edges in Th. The
space RTh of Raviart-Thomas finite elements of degree 1; its dimension is nf ,
the number of faces in Th. The space PCh of piecewise-constant elements; its
dimension is nt, the number of tetrahedra in Th.

It is well-known that Lh ⊂ H1(Ω) = {φ ∈ L2(Ω) | gradφ ∈ (L2(Ω))3},
Nh ⊂ H(curl; Ω) = {v ∈ (L2(Ω))3 | curl v ∈ (L2(Ω))3}, RTh ⊂ H(div; Ω) and
PCh ⊂ L2(Ω). Moreover gradLh ⊂ Nh, curlNh ⊂ RTh, and divRTh ⊂ PCh.
Let us consider a basis of Nh, {wh,1, . . .wh,ne

}, such that
∫
ej

wh,i · τ = δi,j for

1 ≤ i, j ≤ ne, and a basis of RTh, {rh,1, . . . rh,nf
}, such that

∫
fk

rh,l · ν = δl,k
for 1 ≤ k, l ≤ nf .

Fix a total ordering v1, . . . , vnv
of the elements of V . This induces an ori-

entation on the elements of E and F : if the end points of ej are va and vb for
some a, b ∈ {1, . . . , nv} with a < b, then the oriented edge ej will be denoted
by [va, vb], with unit tangent vector τ = vb−va

|vb−va| ; moreover, if the face fk has

vertices va, vb and vc with a < b < c, the oriented face fk will be denoted by

[va, vb, vc] and its unit normal vector ν = (vb−va)×(vc−va)
|(vb−va)×(vc−va)| is obtained by the

right hand rule.
We finally need to introduce a set of 1-cycles in Th that are representatives

of a basis of the first homology group H1(Ω,Z) (whose rank will be denoted
by g): in other words, it is a maximal set of non-bounding 1-cycles in Th. An
explicit and efficient construction of these 1-cycles is presented in Hiptmair and
Ostrowski [8]; we denote them by {σn}gn=1. For a more detailed presentation
of the homological concepts that are useful in the numerical approximation
of PDEs, see, e.g., Bossavit [11], Hiptmair [12], Gross and Kotiuga [13]; see
also Benedetti, Frigerio and Ghiloni [14], Alonso Rodŕıguez et al. [9], Alonso
Rodŕıguez et al. [15].

3. Construction of a basis of H0(div; Ω) ∩RTh

For constructing a basis of H0(div; Ω)∩RTh we present two different proce-
dures.

Let us start with some remarks. First of all, one clearly has curlNh ⊂
H0(div; Ω) ∩ RTh; however, taking the curl of a basis of Nh furnishes a set of
vector fields that are not linearly independent, as there are functions in Nh that
are curl-free (for instance, the gradients of the nodal elements Lh). Moreover,
if ∂Ω is not connected, namely p ≥ 1, then curlNh 6= H0(div; Ω)∩RTh. In fact,
for each s = 1, . . . , p, the following problem{

div vh,s = 0 in Ω∫
(∂Ω)r

vh,s · ν = δs,r ∀ r = 1, . . . , p

has a unique solution orthogonal to curlNh (see Alonso Rodŕıguez and Valli [16]).
This description also shows that the dimension of H0(div; Ω)∩RTh is equal

to p plus the dimension of curlNh. It is well-known that the dimension of the
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space curlNh is equal to ne− (nv− 1)− g so the dimension of H0(div; Ω)∩RTh
is ne− (nv − 1)− g+ p = nf −nt, because nv −ne +nf −nt = 1− g+ p by the
Euler–Poincaré formula.

Having in mind this picture, the first procedure we present for the construc-
tion of a basis of H0(div; Ω)∩RTh is an extension of previous approaches, that
are indeed restricted to special domains: Dubois [3] and Scheichl [4] assume
that Ω is simply-connected (which is equivalent to require g = 0, see Benedetti,
Frigerio and Ghiloni [14, Sect. 3.2])); Rapetti, Dubois and Bossavit [5] assume
that Ω is a κ-fold torus, thus in particular p = 0. Our method consists in the
determination of a suitable basis of curlNh, making use of some tools of graph
theory, with the addition of p linearly independent functions in H0(div; Ω)∩RTh
that are not in curlNh. (Let us recall that the use of graph theory in numerical
fluid dynamics has been also proposed by Hecht [2], Gustafson and Hartman [6],
[7].)

A second option is to follow an algebraic approach, that is related to what
presented in Alotto and Perugia (see [17], [18]). This procedure is essentially
grounded on the solution of the following problem: given fh ∈ PCh, find vh ∈
RTh such that div vh = fh. This problem is in fact a linear system of nt
equations and nf unknowns and the matrix associated to this linear system
is the transpose of the incidence matrix that for each tetrahedron returns its
faces. Thus, the construction of a basis of H0(div; Ω) ∩RTh coincides with the
computation of a basis of the kernel of this matrix.

3.1. Using the curls

Recall that {wh,j}ne
j=1 is a basis ofNh. Then the set of functions {curl wh,j}ne

j=1

generates a subspace of H0(div; Ω) ∩ RTh but these functions are not linearly
independent, because there are functions in Nh that are curl-free.

The main idea is quite natural, but in the most general case it is somehow
hidden behind some technical aspects. Therefore we prefer to start with a case
that very often occurs in numerical computations (and we will return later to
the general case): we assume to know a set of 1-cycles σn, n = 1, . . . , g, in Th,
representing a basis of H1(Ω,Z), and that these 1-cycles are mutually disjoint
polygonal loops without self-intersection. For each n = 1, . . . , g, select one edge
ε?n belonging to σn; the set σn \ {ε?n} is therefore a tree, and we can find a
spanning tree S = (V,M) of the graph (V,E) such that all the edges of each
σn \ {ε?n} belong to this spanning tree, while the edges {ε?n}

g
n=1 belong to the

cotree (namely, the set of edges not belonging to the tree). Let us also assume
that we have numbered the edges in such a way that {ε?n}

g
n=1 are the first g

edges and that the edges belonging to the tree are the last (nv − 1) edges.
The first set of basis functions is selected by choosing the curl of the Nédélec

basis functions wh,l corresponding to the edges belonging to the cotree, but
different from the “closing” edges {ε?n}

g
n=1 = {el}gl=1. We recall that some

authors have given the name of “belted tree” to the graph (V,M ∪ {ε?n}
g
n=1)

(that indeed is not a tree), see, e.g., Ren and Razek [19], Kettunen et al. [20],
Rapetti et al. [5]: using this notation, we are selecting the curls of the Nédélec
basis functions corresponding to the edges not belonging to the “belted tree”.
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Proposition 1. The vector fields

{curl wh,l}ne−(nv−1)
l=g+1 ⊂ H0(div; Ω) ∩RTh

are linearly independent.

Proof. Suppose that we have

0 =

ne−(nv−1)∑
l=g+1

αl curl wh,l = curl

ne−(nv−1)∑
l=g+1

αlwh,l

 .

For each n = 1, . . . , g we find∮
σn

ne−(nv−1)∑
l=g+1

αlwh,l

 · ds = 0 ,

as, by construction, σn is composed by the “closing” edge ε?n = en and by edges

belonging to the spanning tree. Thus we can conclude that
∑ne−(nv−1)
l=g+1 αlwh,l

is a gradient, say, gradϕh. Indeed, it is easily seen that ϕh is constant: in fact,
for all i = 2, . . . , nv we have

ϕh(vi)− ϕh(v1) =

∫
ci

gradϕh · τ =

ne−(nv−1)∑
l=g+1

αl

∫
ci

wh,l · τ ,

where ci denotes the unique path, composed by edges belonging to the spanning
tree, connecting v1 and vi; hence

∫
ci

wh,l·τ = 0 for each l = g+1, . . . , ne−(nv−1)

and ϕh(vi)− ϕh(v1) = 0. In conclusion ϕh ≡ ϕh(v1) and
∑ne−(nv−1)
l=g+1 αlwh,l =

gradϕh = 0. Since {wh,j}ne
j=1 is a basis of Nh, it follows αl = 0 for all l =

g + 1, . . . , ne − (nv − 1). 2

Note that if the topology of Ω is trivial (namely, g = p = 0, and therefore
Ω is homeomorphic to a cube, see Benedetti, Frigerio and Ghiloni [14, Theor.
3.2]) the procedure above reduces to the determination of the basis as the set

{curl wh,l}ne−(nv−1)
l=1 , the curls of the Nédélec basis functions associated to the

edges of the cotree, and nothing else must be done: in fact, in this case the
dimension of H0(div; Ω) ∩RTh is ne − (nv − 1).

If g 6= 0 the result proved in Proposition 1 shows that one has to disregard
also the curls associated to some edges belonging to the cotree, namely, to the
“closing” edges {ε?n}

g
n=1 = {el}gl=1. Instead, when p 6= 0 we have to add some

other basis functions.
Suppose now that p ≥ 1 and consider the following dual graph: the dual

vertices are W = T ∪ Σ, where the elements of T are the tetrahedra of the
mesh and the elements of Σ are the p + 1 connected components of ∂Ω. The
set of dual arcs is F , the set of the faces of the mesh; an internal face connects
two tetrahedra, while a boundary face connects a tetrahedron and a connected
component of ∂Ω. So the dual graph is given by (W,F ).
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The number of dual vertices is equal to nt + p + 1, hence a spanning tree
S = (W,M) of (W,F ) has nt + p dual arcs (and consequently its cotree has
nf − nt − p dual arcs). Therefore the linear system

div vh = 0 in Ω∫
(∂Ω)r

vh · ν = cr ∀ r = 1, . . . , p∫
f

vh · ν = df ∀ f 6∈ M
(6)

is a square linear system of nf equations and unknowns. In Alonso Rodŕıguez
and Valli [16] it has been shown that it is uniquely solvable, and it is also
described how to construct the solution vh in an efficient way.

For each s = 1, . . . , p, let us denote vh,s ∈ RTh the unique solution of
div vh,s = 0 in Ω∫

(∂Ω)r
vh,s · ν = δs,r ∀ r = 1, . . . , p∫

f
vh,s · ν = 0 ∀ f 6∈M .

(7)

Theorem 1. Let {vh,s}ps=1 be the vector fields introduced in (7). The set

{curl wh,l}ne−(nv−1)
l=g+1 ∪ {vh,s}ps=1

is a basis of H0(div; Ω) ∩RTh.

Proof. Since the flux of a curl through a closed surface is vanishing, the flux
through (∂Ω)r of a linear combination of these vector fields reduces to

p∑
s=1

αs

∫
(∂Ω)r

vh,s · ν = αr .

Hence we have a set of linearly independent vector fields, and their number is
ne − (nv − 1)− g + p = nf − nt, the dimension of H0(div; Ω) ∩RTh. 2

3.1.1. The general case

From the theoretical point of view every bounded polyhedral domain Ω ⊂ R3

with Lipschitz boundary, equipped with a triangulation Th, admits a “belted
tree” and hence there always exist 1-cycles {σn}gn=1 in Th, representing a ba-
sis of H1(Ω,Z), with the additional properties that they are mutually disjoint
polygonal loops without self-intersection. However, we do not know any algo-
rithm able to compute them explicitly. On the other hand, as shown in Hiptmair
and Ostrowski [8] (see also Alonso Rodŕıguez et al. [9]), it is possible to construct
the 1-cycles {σn}gn=1 without the additional properties: each σn is a formal sum
of edges in Th with integer coefficients.

To make precise this argument, we must slightly modify the procedure used
before. First, let us consider the graph given by the vertices and the edges
of Th on ∂Ω. The number of connected components of this graph coincides
with the number of connected components of ∂Ω. For each r = 0, 1, . . . , p let
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Sr∂Ω = (V r∂Ω,M
r
∂Ω) be a spanning tree of the corresponding connected component

of the graph. Then consider the graph (V,E), given by all the vertices and edges
of Th, and a spanning tree of this graph, S = (V,M), such that Mr

∂Ω ⊂ M for
each r = 0, 1, . . . , p. Let us order the edges in such a way that the edge el belongs
to the cotree for l = 1, . . . , ne− (nv − 1) and the last nv − 1 edges belong to the
tree, namely, the edges ene−(nv−1)+i belong to the tree for i = 1, . . . , nv − 1. In
particular, denote by eq, q = 1, . . . , 2g, the set of edges of ∂Ω, constructed by
Hiptmair and Ostrowski [8], that have the following properties: they all belong
to the cotree, and each one of them “closes” a 1-cycle γq that is a representative
of a basis of the first homology group H1(∂Ω,Z) (whose rank is indeed equal to
2g). The difference with respect to the previous case is that, instead of the g
edges ε?n that are “closing” edges for σn, the representatives of a basis of the first
homology group H1(Ω,Z), now we know the 2g edges eq that are “closing” edges
for γq, the representatives of a basis of the first homology group H1(∂Ω,Z).

Having clarified the situation, we recall that the 1-cycles σn can be expressed
as the formal sum

σn =

2g∑
q=1

An,qγq =

2g∑
q=1

An,qeq +

ne∑
i=ne−(nv−1)+1

an,iei , (8)

for suitable and explicitly computable integers An,q.
The idea of the method is now the following: first, consider the set

{curl wh,l}ne−(nv−1)
l=2g+1 ,

that, as in Proposition 1, is easily shown to be composed by linearly independent
vector fields. However, since the index l starts from 2g + 1 and not from g + 1,
for replacing Proposition 1 with another somehow equivalent statement we need
to select other g independent functions. The procedure reads as follows.

Look for g functions zh,λ ∈ RTh, λ = 1, . . . , g, of the form

zh,λ =

2g∑
υ=1

c(λ)
υ curl wh,υ ,

where the linearly independent vectors c(λ) ∈ R2g are chosen in such a way that∮
σn

(
2g∑
υ=1

c(λ)
υ wh,υ

)
· ds = 0

for n = 1, . . . , g. This can be done since σn is formed by the “closing” edges eq,
q = 1, . . . , 2g, and by edges belonging to the spanning tree, so that∮

σn

(
2g∑
υ=1

c(λ)
υ wh,υ

)
· ds =

2g∑
q=1

An,q

∫
eq

(
2g∑
υ=1

c(λ)
υ wh,υ

)
· τ =

2g∑
q=1

An,qc
(λ)
q ,
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and the matrix A ∈ Zg×2g with entries An,q has rank g (see Hiptmair and
Ostrowski [8], Alonso Rodŕıguez et al. [9, Sect. 6]). Thus we only have to
determine a basis c(λ) ∈ R2g of the kernel of A, λ = 1, . . . , g.

Since in all the cases interesting for applications the matrix A has a relatively
small dimension (the genus g of Ω is very often a small number, say, less than
twenty), finding the vectors c(λ) is an easy task. However, it is worth noting
that, since the 1-cycles σn have been determined by means of the procedure
proposed by Hiptmair and Ostrowski [8], a suitable choice of the vector fields
c(λ) is already available.

In fact, let us denote by 2gr, r = 0, 1, . . . , p, the rank of the first homol-
ogy group H1((∂Ω)r,Z); clearly we have

∑p
r=0 2gr = 2g. Acting on each con-

nected component (∂Ω)r of the boundary ∂Ω and proceeding as in Hiptmair

and Ostrowski [8] we construct the 1-cycles γ
(r)
t , t = 1, . . . , 2gr, that are rep-

resentatives of a basis of the first homology group H1((∂Ω)r,Z) (and that, all
together, are representatives of a basis of the first homology group H1(∂Ω,Z)).

We also determine an edge e
(r)
t , that is the only edge of γ

(r)
t belonging to the

cotree and that “closes” the 1-cycle γ
(r)
t . Let us order these “closing” edges

as {e(0)
t }

2g0
t=1, {e(1)

t }
2g1
t=1, . . . , {e(p)

t }
2gp
t=1, and similarly the 1-cycles {σn}gn=1 as

{σ(0)
m }g0m=1, {σ(1)

m }g1m=1, . . . , {σ(p)
m }gpm=1. For each m = 1, . . . , gr we can write

σ(r)
m =

2gr∑
t=1

A
(r)
m,tγ

(r)
t ,

for suitable integer coefficients A
(r)
m,t. The (g × 2g)-matrix A in (8) is the block

matrix having A(r) as diagonal blocks.
Set Q0 = 0 and Qr =

∑r−1
s=0 gs, r = 1, . . . , p. As before, for each r =

0, 1, . . . , p we want to select a set of vector fields z
(r)
h,ω ∈ RTh, ω = 1, . . . , gr, of

the form

z
(r)
h,ω =

2gr∑
ρ=1

c(r,ω)
ρ curl wh,ρ+2Qr , (9)

where the linearly independent vectors c(r,ω) ∈ R2gr are chosen in such a way
that ∮

σ
(r)
m

z
(r)
h,ω · ds =

∮
σ
(r)
m

(
2gr∑
ρ=1

c(r,ω)
ρ wh,ρ+2Qr

)
· ds = 0 (10)

for each m = 1, . . . , gr.
It is now useful to introduce some notation. Denote by κ̀(γ, γ′) the linking

number between two disjoint 1-cycles γ and γ′ and by G(r) = (G
(r)
ρ,t) ∈ Z2gr×2gr

the matrix with entries G
(r)
ρ,t = κ̀(γ

(r)
ρ , R+γ

(r)
t ), where R+γ

(r)
t is a 1-cycle ho-

mologous to γ
(r)
t and completely contained in Ω (therefore not intersecting γ

(r)
ρ ).

The rank of the matrix G(r) turns out to be equal to gr (see Alonso Rodŕıguez
et al. [9] for a more detailed presentation of these tools and arguments). We
can prove:
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Lemma 1. For each r = 0, 1, . . . , p a set of linearly independent vectors c(r,m) ∈
Z2gr , m = 1, . . . , gr, to be used in (9) for obtaining (10), is given by g0 inde-
pendent columns of the matrix G(0) (if r = 0) and by gr independent rows of
the matrix G(r) (if r = 1, . . . , p).

Proof. Since σ
(r)
m =

∑2gr
t=1A

(r)
m,tγ

(r)
t =

∑2gr
t=1A

(r)
m,te

(r)
t +

∑ne

i=ne−(nv−1)+1 a
(r)
m,iei

and for ρ ∈ {1, . . . , 2gr} the index ρ+2Qr denotes edges belonging to the cotree,
we can rewrite (10) as

0 =
∮
σ
(r)
m

(∑2gr
ρ=1 c

(r,m)
ρ wh,ρ+2Qr

)
· ds

=
∑2gr
t=1A

(r)
m,t

(∑2gr
ρ=1 c

(r,m)
ρ

∮
e
(r)
t

wh,ρ+2Qr
· ds
)

=
∑2gr
t=1A

(r)
m,tc

(r,m)
t

for each m = 1, . . . , gr, since
∮
e
(r)
t

wh,ρ+2Qr · ds = δt,ρ. From the results in

Alonso Rodŕıguez et al. [9, Sect. 6] (see also Hiptmair and Ostrowski [8, Sect.
4]) we know that∑2g0

t=1(G(0))Tρ,tA
(0)
m,t = 0 , ∀m = 1, . . . , g0, ρ = 1, . . . , 2g0∑2gr

t=1G
(r)
ρ,tA

(r)
m,t = 0 , ∀m = 1, . . . , gr, ρ = 1, . . . , 2gr (r = 1, . . . , p) .

Therefore, in order to complete the proof, it is sufficient to define the vec-
tors c(0,m) as g0 linearly independent rows of (G(0))T (namely, g0 independent
columns of G(0)), and the vectors c(r,m), r = 1, . . . , p, as gr linearly independent
rows of G(r). 2

Note that the square matrices G(r) have dimension 2gr, a very small number
in all the cases interesting for applications. Therefore determining gr indepen-
dent rows or columns of G(r) is quite cheap.

We are now in a position to conclude, taking into account the block structure
of the problem.

Proposition 2. Let zh,λ, λ = 1, . . . , g, be the vector fields of the form zh,λ =∑2g
υ=1 c

(λ)
υ curl wh,υ, with c(λ) ∈ Z2g given by c(λ) = (c(0,λ),0, . . . ,0) for λ =

1, . . . , g0, c(λ) = (0, c(1,λ−Q1),0, . . . ,0) for λ = Q1 + 1, . . . , Q1 + g1, . . . , c(λ) =
(0, . . . ,0, c(p,λ−Qp)) for λ = Qp + 1, . . . , Qp + gp = g, the vectors c(r,m) ∈ Z2gr

being determined in Lemma 1. The vector fields

{curl wh,l}ne−(nv−1)
l=2g+1 ∪ {zh,λ}gλ=1 ⊂ H

0(div; Ω) ∩RTh

are linearly independent.

Proof. Suppose that we have

0 =

ne−(nv−1)∑
l=2g+1

αl curl wh,l +

g∑
λ=1

βλzh,λ

= curl

ne−(nv−1)∑
l=2g+1

αlwh,l +

g∑
λ=1

βλ

2g∑
υ=1

c(λ)
υ wh,υ

 .
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The 1-cycle σn is formed by the “closing” edges eq, q = 1, . . . , 2g, and by edges
belonging to the spanning tree S = (V,M), thus for each n = 1 . . . , g we have

∮
σn

ne−(nv−1)∑
l=2g+1

αlwh,l

 · ds = 0 .

Moreover, since the 1-cycle σn is equal to a 1-cycle σ
(r)
m for a suitable r ∈

{0, 1, . . . , p} and m ∈ {1, . . . , gr}, we have∮
σ
(r)
m

(
g∑

λ=1

βλ

2g∑
υ=1

c(λ)
υ wh,υ

)
· ds =

g∑
λ=1

βλ

∮
σ
(r)
m

(
2gr∑
ρ=1

c
(λ)
ρ+2Qr

wh,ρ+2Qr

)
· ds

=

gr∑
ω=1

βω+Qr

∮
σ
(r)
m

(
2gr∑
ρ=1

c(r,ω)
ρ wh,ρ+2Qr

)
· ds = 0 ,

having used (10).
As in Proposition 1, we conclude that

0 =

ne−(nv−1)∑
l=2g+1

αlwh,l +

g∑
λ=1

βλ

2g∑
υ=1

c(λ)
υ wh,υ

=

ne−(nv−1)∑
l=2g+1

αlwh,l +

2g∑
υ=1

(
g∑

λ=1

βλc
(λ)
υ

)
wh,υ .

Since wh,j , j = 1, . . . , ne, are linearly independent, we find αl = 0 for l =

2g + 1, . . . , ne − (nv − 1) and
∑g
λ=1 βλc

(λ)
υ = 0 for υ = 1, . . . , 2g. The vectors

c(λ), λ = 1, . . . , g, are also linearly independent, hence we have βλ = 0 for
λ = 1, . . . , g. 2

The final theorem now reads:

Theorem 2. Let {zh,λ}gλ=1 be the vector fields introduced in Proposition 2 and
{vh,s}ps=1 the vector fields introduced in (7). The set

{curl wh,l}ne−(nv−1)
l=2g+1 ∪ {zh,λ}gλ=1 ∪ {vh,s}

p
s=1

is a basis of H0(div; Ω) ∩RTh.

The proof is the same than that of Theorem 1.

Remark 1. Let us mention that the numerical approximation of the solution
to problem (4) in a domain homeomorphic to a cube (namely, g = p = 0)
has been considered in Hiptmair and Hoppe [21], using as divergence-free finite
elements the curls of all the Nédélec elements, without eliminating those associ-
ated to some edges. In this way the resulting algebraic system is expressed by a
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symmetric and positive semidefinite singular matrix. However, a suitable multi-
level algorithm is shown to be an efficient way for determining the approximate
solution.

Clearly, being able to select appropriate edges leads to an algebraic problem
that is associated to a symmetric and positive definite non-singular matrix of
smaller size (ne−nv+1 rows instead of ne rows), for which iterative algorithms
and suitable preconditioners are easier to devise.

3.2. The algebraic approach

For describing the algebraic approach, let us start with some definitions. The
degrees of freedom zj of a Raviart–Thomas finite element zh =

∑nf

j=1 zjrh,j are
the fluxes across the faces of the triangulation, having chosen the orientation of
the unit normal vector ν as indicated before. Let ti be a tetrahedron and fj a
face of Th. We define the integer oti(fj) by 0 if fj is not a face of ti, by 1 if
fj is a face of ti for which the chosen orientation coincides with the external to
ti, by −1 if fj is a face of ti for which the chosen orientation is opposite to the
external to ti.

Since the divergence of zh ∈ RTh is piecewise-constant, the condition div zh =
0 can be written as

∫
ti

div zh = 0 for all i = 1, . . . , nt. Therefore, we have

div zh = 0 if and only if
∫
∂ti

zh · ν = 0 for all i = 1, . . . , nt, namely, if and only
if

0 =

∫
∂ti

zh · ν =

nf∑
j=1

oti(fj)zj ∀ i = 1, . . . , nt . (11)

Note that the sum in (11) reduces indeed to only four terms.
Let us consider the following dual graph (it is a slight modification of the dual

graph used in Section 3.1, and this choice makes easier the following arguments):
the nodes are the tetrahedra of Th plus an additional node, t0, representing
R3 \Ω; the arcs are the faces of Th. The faces in Ω connect two tetrahedra while
a face on ∂Ω connects the tetrahedron containing that face with the additional
node t0. Let us denote by W̃ the set T ∪ {t0}; a spanning tree S̃ = (W̃ ,M̃) of

this graph (W̃ , F ) contains nt+1−1 = nt arcs while the cotree contains nf −nt
arcs.

The main point now is to note that, if zh ∈ RTh and div zh = 0, the degrees
of freedom corresponding to a face in the spanning tree can be expressed in
terms of the degrees of freedom corresponding to faces in the cotree (this fact
has been previously called “tree–cotree condensation”, see, e.g., Alotto and
Perugia [17], [18]).

The approach adopted in Alonso Rodŕıguez and Valli [16] clearly illustrates
this assertion, and reads in this way. The leaves of the spanning tree are either
a tetrahedron ti with exactly one face in the spanning tree or the node t0 repre-
senting R3 \Ω (if just one face of F∂Ω belongs to the spanning tree). Consider a
leave ti 6= t0: using (11), the degree of freedom corresponding to the unique face
of ti belonging to the tree can be computed in terms of the degrees of freedom
associated to the three other faces of ti in the cotree. Now we can eliminate
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from the spanning tree the leaves and the arcs arriving to the leaves, and repeat
the procedure with the new tree (it is not longer a spanning tree of the original
graph, but this is not relevant).

The overall procedure can be formally expressed as a linear map from the
nf − nt unknowns associated to the cotree of S̃ in the dual graph to the nt
unknowns associated to the spanning tree S̃. An explicit construction of the
matrix expressing this procedure is given in Alotto and Perugia [17], [18], and
can be described as follows.

First of all, note that each face fk ∈ M̃ splits the spanning tree S̃ into two
connected components. One of them, denoted by S̃(fk) = (W̃(fk),M̃(fk)), does
not contain t0. Let us indicate by Vk the set given by the union of the tetrahedra
belonging to W̃(fk), that is, Vk = ∪

ti∈W̃(fk)
ti ⊂ Ω. Since fk is joining the two

connected components of the spanning tree, it follows that fk ⊂ ∂Vk; moreover,
fk is the unique face in ∂Vk belonging to M̃.

Let us identify Vk with the vector V(k) ∈ Nnt with coefficients v
(k)
i = 1 if

ti ∈ W̃(fk) and v
(k)
i = 0 otherwise, and, as usual, each zh ∈ RTh with the vector

Z of its coefficients zj in the canonical base, j = 1, . . . , nf . Let us denote by
B the incidence matrix, namely, the (nf ×nt)-matrix that for each tetrahedron
returns its faces; it is worth noting that B is the transpose of the matrix D
expressing the divergence operator.

We are now in a position to conclude: if zh ∈ RTh satisfies div zh = 0, the
divergence theorem ensures that

∫
∂Vk zh · ν = 0, therefore for each k such that

fk ∈ M̃ we have found
BV(k) · Z = 0 . (12)

Since the unique face in ∂Vk belonging to M̃ is fk, from (12) we can write zk in
terms of the degrees of freedom associated to the remaining faces in ∂Vk that
belong to the cotree. In other words, having ordered the faces in such a way that
the face fl belongs to the cotree for l = 1, . . . , nf − nt and the face fnf−nt+i

belongs to the tree for i = 1, . . . , nt, we have seen that, if zh =
∑nf

j=1 zjrh,j
satisfies div zh = 0, for each i = 1, . . . , nt it holds

znf−nt+i −
nf−nt∑
l=1

mi,lzl = 0 ,

where the coefficients mi,l take the values −1, 0 or 1.
This statement can be made more precise:

Proposition 3. Let zh =
∑nf

j=1 zjrh,j be an element of RTh and define by Z
the vector with coefficients zj, j = 1, . . . , nf . Then we have div zh = 0 in Ω if
and only if [

−M Int

]
Z = 0 , (13)

where the matrix M has entries mi,l, i = 1, . . . , nt, l = 1, . . . , nf − nt, and Int

denotes the identity of dimension nt.
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Proof. We have already shown that if div zh = 0 then (13) is satisfied.
Thus it remains to prove that (13) implies div zh = 0. Since, after reordering,

(13) is equivalent to (12), namely, to
∫
∂Vk zh · ν = 0 for each k such that the

face fk belongs to the spanning tree M̃, we have to prove that if
∫
∂Vk zh ·ν = 0

for each k then
∫
t
div zh = 0 for all t ∈ T .

Without loosing generality, we can assume that the additional node t0, rep-
resenting R3 \Ω, is the root of the spanning tree. First of all, it is clear that for

a leave t̂ 6= t0 one has t̂ = Vk̂, being fk̂ the only face in M̃ incident to the leave

t̂. Consequently,
∫
t̂
div zh = 0, as

∫
t̂
div zh =

∫
∂t̂

zh · ν =
∫
∂Vk̂

zh · ν.

For a tetrahedron t ∈ T let us define the distance d(t, t0) as the number

of the faces that connect t with t0 along the path of M̃; moreover, set µ =
maxt∈T d(t, t0). We have just proved that

∫
t
div zh = 0 for all t ∈ T such that

d(t, t0) = µ (in fact, d(t, t0) = µ says that t is a leave).
We use now an induction procedure. Supposing that the result is true for

all tetrahedra t with d(t, t0) ≥ m+ 1 for some m with 1 ≤ m ≤ µ− 1, we show
that it is true for all tetrahedra at distance m. Consider t̂ with d(t̂, t0) = m

and take the unique t∗ with d(t∗, t0) = m − 1 and t∗ ∩ t̂ = fk̂ ∈ M̃. Let us

set W̃−(fk̂) = W̃(fk̂) \ {t̂}; we clearly have Vk̂ = t̂ ∪
(
∪
ti∈W̃−(fk̂)

ti

)
; moreover,

notice that for all ti ∈ W̃−(fk̂) one has with d(ti, t0) ≥ m + 1. Therefore we
have

0 =

∫
∂Vk̂

zh · ν =

∫
t̂

div zh +
∑

ti∈W̃−(fk̂)

∫
ti

div zh =

∫
t̂

div zh ,

the last equality being true by the induction assumption. 2

This proposition shows that a basis of H0(div; Ω)∩RTh can be derived from
a basis of the kernel of

[
−M Int

]
.

Theorem 3. A basis of H0(div; Ω) ∩ RTh is given by the set of functions

{
∑nf

j=1Xj,lrh,j}
nf−nt

l=1 , where X =

[
Inf−nt

M

]
and Inf−nt denotes the identity

of dimension nf − nt.

Proof. These vector fields are linearly independent. In fact, since {rh,j}
nf

j=1 is
a basis of the space RTh, from

0 =

nf−nt∑
l=1

αl

 nf∑
j=1

Xj,lrh,j

 =

nf∑
j=1

(nf−nt∑
l=1

Xj,lαl

)
rh,j ,

it follows that
∑nf−nt

l=1 Xj,lαl = 0 for each j = 1, . . . , nf . This means that the

vector with entries αl belongs to the kernel of X =

[
Inf−nt

M

]
, and the kernel

of X is clearly trivial.
Moreover, from Proposition 3 it follows at once that a function

∑nf

j=1Xj,lrh,j
belongs to H0(div; Ω) ∩RTh for each l = 1, . . . , nf − nt.
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The proof ends recalling that the dimension of the finite element space
H0(div; Ω) ∩RTh is nf − nt. 2

Remark 2. It is worth noting that the mass matrix associated to the basis
functions determined in Theorems 1 or 2 is a sparse matrix, except for very
few rows and columns. In fact, the support of the basis functions curl wh,l and
zh,λ is localized; only the functions vh,s have a non-localized support, but these
functions are only p, and in all the cases interesting for applications p+ 1 (the
number of connected components of the boundary ∂Ω) is a small number.

Instead, the mass matrix associated to the basis functions determined in
Theorem 3 is not sparse. This probably explains why in the literature it is often
asserted that the finite element basis functions of H0(div; Ω) have a non-localized
support. We have seen that this is not always the case, and depends on which
basis functions have been constructed.

Remark 3. An alternative construction of a basis of H0(div; Ω) ∩RTh can be
done solving (nf−nt) times problem (6) (for instance, with the method presented
in Alonso Rodŕıguez and Valli [16]), each time with a right hand side having only
one non-vanishing value among all {cr}, r = 1, . . . , p, and {df}, f 6∈ M.

Clearly, this procedure would furnish basis functions with non-localized sup-
port; moreover, its computational cost is much higher than that of the other two
proposed approaches.
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