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Abstract

In this paper we present the a priori and a posteriori error analyses of a non-standard mixed
finite element method for the linear elasticity problem with non-homogeneous Dirichlet boundary
conditions. More precisely, the approach introduced here is based on a simplified interpretation of
the pseudostress-displacement formulation originally proposed in Arnold, D.N. and Falk, R.S.,
A new mixed formulation for elasticity. Numer. Math. 53 (1988), no. 1-2, 13–30, which does not
require symmetric tensor spaces in the finite element discretization. In addition, physical quantities
such as the stress, the strain tensor of small deformations, and the rotation , are computed through a
simple postprocessing in terms of the pseudostress variable. Furthermore, we also introduce a second
element-by-element postprocessing formula for the stress, which yields an optimally convergent
approximation of this unknown with respect to the broken H(div)-norm. We apply the classical
Babuška-Brezzi theory to prove that the corresponding continuous and discrete schemes are well-
posed. In particular, Raviart-Thomas spaces of order k ≥ 0 for the pseudostress and piecewise
polynomials of degree ≤ k for the displacement can be utilized. Moreover, we remark that in
the 3D case the number of unknowns behaves approximately as 9 times the number of elements
(tetrahedra) of the triangulation when k = 0. This factor increases to 12.5 when one uses the
classical PEERS. Next, we derive a reliable and efficient residual-based a posteriori error estimator
for the mixed finite element scheme in the case of convex polyhedral domains. Finally, several
numerical results illustrating the performance of the method, confirming the theoretical properties
of the estimator, and showing the expected behaviour of the associated adaptive algorithm, even
for some examples not fully covered by the theory, are provided.
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1 Introduction

The introduction of further unknowns of physical interest, such as stresses, rotations, and tractions,
and the need of locking-free numerical schemes when the corresponding Poisson ratio approaches 1/2,
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Ingenieŕıa Matemática (CI2MA), Universidad de Concepción; and by Dirección de Investigación of the Universidad
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§Escuela de Matemática, Universidad Nacional de Costa Rica, Heredia, Costa Rica, email:

filander.sequeira@una.cr. Present address: CI2MA and Departamento de Ingenieŕıa Matemática, Universidad
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have historically been the main reasons for the utilization of dual-mixed variational formulations and
their associated mixed finite element methods to solve elasticity problems. The incompressible case can
also be easily handled with this kind of formulations since the constants appearing in the stability and a
priori error estimates do not depend on the unbounded Lamé parameter. Consequently, the derivation
of appropriate finite element subspaces yielding corresponding well-posed Galerkin schemes has been
extensively studied in the last three decades at least, and important early contributions with weakly
imposed symmetry for the stress, which include the classical PEERS element and related approaches,
were provided in [5], [44], and [45], to name a few. However, since the appearing of those first works,
the main challenge in this direction has been the development of mixed finite element methods that
incorporate the symmetry of the stress into the definition of the respective continuous and discrete
spaces. Indeed, it was only until one decade ago that new stable mixed finite element methods for
linear elasticity in 2D and 3D, including both strong symmetry and weakly imposed symmetry for the
stresses, were derived using the finite element exterior calculus, a quite abstract framework involving
several sophisticated mathematical tools (see, e.g. [8], [9], [10], [11]). In fact, the first elements
using polynomial shape-functions that are known to be stable for the symmetric stress-displacement
formulation in 2D are the ones provided in [11]. The corresponding lowest order element consists
of piecewise cubic polynomials for the stress, with 24 degrees of freedom per triangle, and piecewise
linear functions for the displacement. The 3D analogue of this element, which considers piecewise
quartic stresses with 162 degrees of freedom per tetrahedron, and piecewise linear displacements, was
proposed in [1]. In turn, the stable elements with a weak symmetry condition for the stresses have been
constructed in [8] and [10], and simpler proofs of some of the main results obtained there, which are
based on the use of stable Stokes elements and interpolation operators that keep the reduced symmetry,
were provided in [13]. The resulting element with the lowest polynomial degrees consists of piecewise
linear approximations for the stress and piecewise constants functions for both the displacement and
rotation unknowns.

On the other hand, an alternative way of dealing with dual-mixed variational formulations in
continuum mechanics, without the need of imposing neither strong nor weak symmetry of the stresses,
is given by the utilization of pseudostress-based approaches. In fact, this technique, which has become
very popular, specially in fluid mechanics, has gained considerable attention in recent years due to its
applicability to diverse linear as well as nonlinear problems. In particular, the velocity-pseudostress
formulation of the Stokes equations was first studied in [15], and then reconsidered in [36], where further
results, including the eventual incorporation of the pressure unknown and an associated a posteriori
error analysis, were provided. In turn, augmented mixed finite element methods for pseudostress-based
formulations of the stationary Stokes equations, which extend analogue results for linear elasticity
problems (see [29], [30], [34]), were introduced and analyzed in [27]. Furthermore, the velocity-
pressure-pseudostress formulation has also been applied to nonlinear Stokes problems. In particular, a
new mixed finite element method for a class of models arising in quasi-Newtonian fluids, was introduced
in [33]. The results in [33] were extended in [25] to a setting in reflexive Banach spaces, thus allowing
other nonlinear models such as the Carreau law for viscoplastic flows. Moreover, the dual-mixed
approach from [33] and [25] was reformulated in [39] by restricting the space for the velocity gradient
to that of trace-free tensors. For related contributions dealing with pseudostress-based formulations
in incompressible flows, we refer to [26], [35], and the references therein. In turn, the corresponding
extension to the Navier-Stokes equations has been developed in [16] and [17]. More recently, a new
dual-mixed method for the aforementioned problem, in which the main unknowns are given by the
velocity, its gradient, and a modified nonlinear pseudostress tensor linking the usual stress and the
convective term, has been proposed in [40]. The idea from [40] has been modified in [19] through the
introduction of a nonlinear pseudostress tensor linking now the pseudostress (instead of the stress)
and the convective term, which, together with the velocity, constitute the only unknowns. Lately, the
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approach from [19] has been further extended in [24] and [18], where new augmented mixed-primal
formulations for the stationary Boussinesq problem and the Navier-Stokes equations with variable
viscosity, respectively, have been proposed and analyzed.

In spite of the many aforedescribed works, it is quite surprising to realize that almost no contri-
bution is available in the literature on the use of pseudostress-based formulations for the elasticity
problem. Indeed, the search in MathScinet under the title words “pseudostress” and “elasticity” yields
no results at all. Actually, up to the authors’ knowledge, the only paper referring to this issue is [7],
where a modified Hellinger-Reissner principle is employed to derive a new mixed variational formu-
lation for the equations of linear elasticity. The resulting approach yields a pseudostress unknown
defined in terms of the gradient of the displacement field, but depending also on a parameter to be
chosen conveniently.

In the present paper we modify the approach from [7] by realizing that, under a suitable rewriting of
the equilibrium equation, one can define a simpler pseudostress unknown in terms again of the gradient
of the displacement field, but independent of any additional parameter. In addition, we introduce
an element-by-element postprocessing formula for the symmetric stress, which yields an optimally
convergent approximation of this unknown with respect to the broken H(div)-norm. Moreover, a
reliable and efficient residual-based a posteriori error estimator for the mixed finite element scheme is
also derived in the case of convex polyhedral domains. The rest of this paper is organized as follows.
In Section 2 we describe the linear elasticity problem with non-homogeneous Dirichlet boundary
conditions, derive its pseudostress-based dual-mixed formulation, and then show that it is well-posed.
In Section 3 we introduce and analyze the associated mixed finite element method. In particular, we
show that Raviart-Thomas spaces of order k ≥ 0 for the pseudostress and piecewise polynomials of
degree ≤ k for the displacement can be employed, which, in the 3D case, yields a global number of
unknowns behaving approximately as only 9 times the number of tetrahedra of the triangulation when
k = 0. Next, a reliable and efficient residual-based a posteriori error estimator is developed in Section 4
for convex polyhedral domains in 3D. Finally, several numerical results showing the good performance
of the mixed finite element method, confirming the reliability and efficiency of the estimator, and
illustrating the expected behaviour of the associated adaptive algorithm, even for some examples in
non-convex domains, are reported in Section 5.

We end this section with some notations to be used below. Given n ∈ {2, 3}, we denote Rn×n the
space of square matrices of order n with real entries, I := (δij) is the identity matrix of Rn×n, and for
any τ := (τij), ζ := (ζij) ∈ Rn×n, we write as usual

τ t := (τji), tr(τ ) :=

n∑
i=1

τii, τ d := τ − 1

n
tr(τ ) I, and τ : ζ :=

n∑
i,j=1

τijζij ,

which corresponds, respectively, to the transpose, the trace, the deviator tensor of a tensor τ , and the
tensorial product between τ and ζ. In turn, in what follows we utilize standard simplified terminology
for Sobolev spaces and norms. In particular, if O ⊆ Rn is a domain, S ⊆ Rn is an open or closed
Lipschitz curve if n = 2 (resp. surface if n = 3), and r ∈ R, we set

Hr(O) := [Hr(O)]n , Hr(O) := [Hr(O)]n×n , and Hr(S) := [Hr(S)]n .

However, when r = 0 we usually write L2(O), L2(O), and L2(S) instead of H0(O), H0(O), and H0(S),
respectively. The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O), Hr(O), and Hr(O)) and
‖ · ‖r,S (for Hr(S) and Hr(S)). In general, given any Hilbert space H, we use H and H to denote Hn

and Hn×n, respectively. In addition, 〈·, ·〉S stands for the usual duality pairing between H−1/2(S) and
H1/2(S), and H−1/2(S) and H1/2(S). Furthermore, with div denoting the usual divergence operator,
the Hilbert space

H(div;O) :=
{
w ∈ L2(O) : div(w) ∈ L2(O)

}
,
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is standard in the realm of mixed problems (see [14], [37]). The space of matrix valued functions whose
rows belong to H(div;O) will be denoted H(div;O), where div stands for the action of div along each
row of a tensor. The Hilbert norms of H(div;O) and H(div;O) are denoted by ‖ ·‖div;O and ‖ ·‖div;O,
respectively. Note that if τ ∈ H(div;O), then div(τ ) ∈ L2(O) and also τn ∈ H−1/2(∂O), where n
denotes the outward unit vector normal to the boundary ∂O. Finally, we employ 0 to denote a generic
null vector (including the null functional and operator), and use C and c, with or without subscripts,
bars, tildes or hats, to denote generic constants independent of the discretization parameters, which
may take different values at different places.

2 The pseudostress-displacement formulation

2.1 The elasticity problem

Let Ω be a bounded and simply connected polyhedral domain in Rn, n ∈ {2, 3}, and Γ := ∂Ω the
boundary of Ω. Our goal is to determine the displacement u and stress tensor σ of a linear elastic
material occupying the region Ω. In other words, given a volume force f ∈ L2(Ω) and a Dirichlet
datum g ∈ H1/2(Γ), we seek a symmetric tensor field σ and a vector field u such that

σ = 2µ e(u) + λ tr(e(u)) I in Ω ,

div(σ) = −f in Ω , and u = g on Γ ,
(2.1)

where e(u) := 1
2(∇u + (∇u)t) is the strain tensor of small deformations, and λ, µ > 0 denote the

corresponding Lamé constants. Next, from

div(σ) = 2µdiv(e(u)) + λ∇div(u) , and div(e(u)) =
1

2
∆u +

1

2
∇div(u) ,

we deduce that
div(σ) = µ∆u + (λ+ µ)∇div(u) .

Consequently, the formulation in displacement of (2.1) reduces to: Find u such that

µ∆u + (λ+ µ)∇div(u) = −f in Ω ,

u = g on Γ .

Now, we define the non-symmetric pseudostress as the tensor

ρ := µ∇u + (λ+ µ) div(u) I

or (since div(u) = tr(∇u)), equivalently

ρ := µ∇u + (λ+ µ) tr(∇u) I .

In this way, using that div(ρ) = div(σ), we can rewrite (2.1) as: Find the pseudostress ρ and the
displacement u such that

ρ = µ∇u + (λ+ µ) tr(∇u) I in Ω ,

div(ρ) = −f in Ω , and u = g on Γ .
(2.2)
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Furthermore, we find from the first equation of (2.2) that

tr(∇u) =
1

nλ+ (n+ 1)µ
tr(ρ) , (2.3)

which implies that the constitutive equation of (2.2) can also be established as

1

µ

{
ρ− λ+ µ

nλ+ (n+ 1)µ
tr(ρ) I

}
= ∇u .

Hence, the new formulation of the problem (2.1) is given by: Find (ρ,u) such that

1

µ

{
ρ− λ+ µ

nλ+ (n+ 1)µ
tr(ρ) I

}
= ∇u in Ω ,

div(ρ) = −f in Ω , and u = g on Γ .

(2.4)

2.2 The dual-mixed variational formulation

Multiplying the first equation in (2.4) by τ ∈ H(div; Ω), integrating by parts in Ω, and using the
Dirichlet boundary condition, we obtain

1

µ

∫
Ω
ρ : τ − λ+ µ

µ(nλ+ (n+ 1)µ)

∫
Ω

tr(ρ) tr(τ ) +

∫
Ω

u · div(τ ) = 〈τn ,g〉Γ ,

which together with the equilibrium equation (second equation in (2.4)) tested against v ∈ L2(Ω),
yields the variational formulation of (2.4) given by: Find (ρ,u) ∈ H×Q such that

a(ρ, τ ) + b(τ ,u) = F (τ ) ∀ τ ∈ H ,

b(ρ,v) = G(v) ∀ v ∈ Q ,
(2.5)

where H := H(div; Ω), Q := L2(Ω), the bilinear forms a : H×H→ R and b : H×Q→ R are defined
by

a(ξ, τ ) :=
1

µ

∫
Ω
ξ : τ − λ+ µ

µ(nλ+ (n+ 1)µ)

∫
Ω

tr(ξ) tr(τ ) ∀ ξ, τ ∈ H , (2.6)

b(τ ,v) :=

∫
Ω

v · div(τ ) ∀ τ ∈ H , ∀ v ∈ Q , (2.7)

and the functionals F ∈ H′ and G ∈ Q′ are given by

F (τ ) := 〈τn ,g〉Γ and G(v) := −
∫

Ω
f · v.

We noted from (2.6) that

a(I, τ ) =
1

(nλ+ (n+ 1)µ)

∫
Ω

tr(τ ) ∀ τ ∈ H , (2.8)

and from (2.7) that
b(I,v) = 0 ∀ v ∈ Q . (2.9)
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Moreover, replacing ξ = ξd +
1

n
tr(ξ) I in (2.6), and using that ξd : τ = ξd : τ d, and that tr(ξd) = 0,

for all ξ ∈ L2(Ω), we arrive at the following equivalent expression for the bilinear form a

a(ξ, τ ) =
1

µ

∫
Ω
ξd : τ d +

1

n(nλ+ (n+ 1)µ)

∫
Ω

tr(ξ) tr(τ ) ∀ ξ, τ ∈ H . (2.10)

The convenience of writing a in the form (2.10) will become clear later on when we analyze the
solvability of (2.5).

We now define H0 :=
{
τ ∈ H(div; Ω) :

∫
Ω tr(τ ) = 0

}
and note that H = H0⊕RI, that is for any

τ ∈ H there exist unique τ 0 ∈ H0 and d :=
1

n|Ω|

∫
Ω

tr(τ ) ∈ R, where |Ω| denotes the measure of Ω,

such that τ = τ 0 + d I. In particular, taking τ = I in the first equation of (2.5), we deduce that∫
Ω

tr(ρ) = (nλ+ (n+ 1)µ)

∫
Γ

g · n ,

which yields ρ = ρ0 + c I, with ρ0 ∈ H0 and the constant c given explicitly by

c :=
(nλ+ (n+ 1)µ)

n |Ω|

∫
Γ

g · n . (2.11)

In this way, replacing ρ by the expression ρ0 + c I in (2.5), with the bilinear form a given by (2.10),
applying the identities (2.8) and (2.9), using that ρd = ρd

0 and div(ρ) = div(ρ0), and denoting
from now on the remaining unknown ρ0 ∈ H0 simply by ρ, we find that the dual-mixed variational
formulation (2.5) is equivalent to the following saddle point problem: Find (ρ,u) ∈ H0 ×Q such that

a(ρ, τ ) + b(τ ,u) = F (τ ) ∀ τ ∈ H0 ,

b(ρ,v) = G(v) ∀ v ∈ Q .
(2.12)

Lemma 2.1 Problems (2.5) and (2.12) are equivalent in the following sense:

i) If (ρ,u) ∈ H × Q is a solution of (2.5), and ρ = ρ0 + c I, with ρ0 ∈ H0 and c ∈ R, then
(ρ0,u) ∈ H0 ×Q is a solution of (2.12).

ii) If (ρ0,u) ∈ H0 × Q is a solution of (2.12), and ρ := ρ0 + c I, with c given by (2.11), then
(ρ,u) ∈ H×Q is a solution of (2.5).

Proof. Let (ρ,u) ∈ H×Q a solution of (2.5), such that ρ = ρ0 + c I, with ρ0 ∈ H0 and c ∈ R. Then
from the first equation of (2.5) we have

a(ρ0, τ ) + b(τ ,u) = F (τ ) − c a(I, τ ) ∀ τ ∈ H ,

which using (2.8), yields

a(ρ0, τ ) + b(τ ,u) = F (τ ) ∀ τ ∈ H0 .

In turn, from the second equation of (2.5) we can write

b(ρ0,v) + c b(I,v) = G(v) ∀ v ∈ Q ,

which according to (2.9), gives

b(ρ0,v) = G(v) ∀ v ∈ Q ,

6



and hence (ρ0,u) ∈ H0 ×Q is a solution of (2.12). Conversely, let (ρ0,u) ∈ H0 ×Q be a solution of
(2.12), and set ρ := ρ0 + c I, with c given by (2.11). Then, given τ = τ 0 + d I ∈ H, with τ 0 ∈ H0 and
d ∈ R, we deduce

a(ρ, τ ) + b(τ ,u) = a(ρ0, τ 0) + b(τ 0,u) + d a(I, c I) = F (τ 0) + d

∫
Γ

g · n

= F (τ 0) + dF (I) = F (τ ) .

On the other hand, using (2.9) we deduce

b(ρ,v) = b(ρ0,v) + c b(I,v) = G(v) ∀ v ∈ Q ,

which shows that (ρ,u) ∈ H×Q is a solution of (2.5). 2

Furthermore, according to the new meaning of ρ, we deduce from (2.4) and (2.11) that the con-
stitutive equation in (2.4) now becomes

1

µ

{
ρ− λ+ µ

nλ+ (n+ 1)µ
tr(ρ) I

}
+

{
1

n |Ω|

∫
Γ

g · n
}

I = ∇u in Ω ,

whereas the equilibrium equation remains the same, that is

div(ρ) = −f in Ω . (2.13)

At this point we remark that the stress σ can be expressed in terms of the pseudostress ρ and
displacement u as

σ = ρ + ρt − (λ+ 2µ) tr(∇u) I ,

whence using the identity (2.3) we can calculate the symmetric stress tensor field in terms of the
pseudostress ρ by

σ = ρ + ρt −
{

λ+ 2µ

nλ+ (n+ 1)µ

}
tr(ρ) I .

In addition, other physical quantities of interest such as the strain tensor of small deformations e(u)
and the rotation γ := 1

2(∇u− (∇u)t), can be computed in terms of the pseudostress ρ by

e(u) =
1

2µ

{
ρ + ρt − 2(λ+ µ)

nλ+ (n+ 1)µ
tr(ρ) I

}
, and γ =

1

4µ
(ρ − ρt) ,

respectively. On the other hand, in terms of the H0-component of pseudostress, the stress is given by

σ = ρ + ρt −
(

λ+ 2µ

nλ+ (n+ 1)µ
tr(ρ)− nλ+ 2µ

n|Ω|

∫
Γ

g · n
)

I . (2.14)

2.3 Analysis of the dual-mixed formulation

In this section we show the well-posedness of (2.12) by using the classical Babuška-Brezzi theory (see,
e.g., [14, 31]). The following lemma will be required.

Lemma 2.2 There exists c1 > 0, depending only on Ω, such that

c1‖τ‖20,Ω ≤ ‖τ d‖20,Ω + ‖div(τ )‖20,Ω ∀ τ ∈ H0. (2.15)
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Proof. It is analogous to the corresponding proof for the two-dimensional case (see [6, Lemma 3.1]
or [14, Proposition 3.1 of Chapter IV]). 2

We note that, the inequality (2.15), being valid only in H0, explains the need of replacing (2.5) by
the variational formulation (2.12). Thus, the following theorem provides the well-posedness of (2.12).

Theorem 2.1 Assume that f ∈ L2(Ω) and g ∈ H1/2(Γ). Then, there exists a unique solution (ρ,u) ∈
H0 ×Q to (2.12). In addition, there exists c2 > 0, independent of λ, such that

‖ρ‖div;Ω + ‖u‖0,Ω ≤ c2

{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.

Proof. It suffices to chek that the bilinear forms a and b satisfy the hypotheses of the Babuška-Brezzi
theory. The proof is similar to that of [36, Theorem 2.1]. For sake of completeness we now provide
the details. We first observe from (2.6) and (2.7) that a and b are bounded with ‖a‖ = 2

µ and ‖b‖ = 1,

respectively. In fact, applying the Cauchy-Schwarz inequality and using that
λ+ µ

n
2λ+ (n+1)

2 µ
< 1 for all

n ≥ 2, we find, from definition of bilinear form a (cf. (2.6)), that

|a(ξ, τ )| =

∣∣∣∣∣∣ 1µ
∫

Ω
ξ : τ − λ+ µ

2µ
(
n
2 λ+ (n+1)

2 µ
) ∫

Ω
tr(ξ) tr(τ )

∣∣∣∣∣∣
≤ 1

µ
‖ξ‖0,Ω‖τ‖0,Ω +

1

2µ
‖tr(ξ)‖0,Ω‖tr(τ )‖0,Ω

≤ 2

µ
‖ξ‖0,Ω‖τ‖0,Ω ≤

2

µ
‖ξ‖div;Ω‖τ‖div;Ω ∀ ξ, τ ∈ H0.

Analogously, applying the Cauchy-Schwarz inequality, we obtain from definition of bilinear form b (cf.
(2.7)) that

|b(τ ,v)| =

∣∣∣∣∫
Ω

v · div(τ )

∣∣∣∣ ≤ ‖div(τ )‖0,Ω ‖v‖0,Ω ≤ ‖τ‖div;Ω ‖v‖0,Ω ∀ τ ∈ H0, ∀ v ∈ Q .

On the other hand, we deduce that V := {τ ∈ H0 : div(τ ) = 0} is the null space of b, whence (2.10)
and Lemma 2.2 imply

a(τ , τ ) ≥ 1

µ
‖τ d‖20,Ω ≥

c1

µ
‖τ‖20,Ω =

c1

µ
‖τ‖2div;Ω ∀ τ ∈ V . (2.16)

This shows that a is V-elliptic, with constant α := c1
µ independent of the Lamé constant λ. Finally,

given v ∈ Q, v 6= 0, we let z ∈ H1
0(Ω) be the unique weak solution of the auxiliary problem

∆ z = v in Ω , v = 0 on Γ .

Then, we let τ̂ be the H0-component of ∇z, which implies div(τ̂ ) = div(∇z) = v in Ω. This shows
that the bounded linear operator div : H0 → Q is surjective, which completes the proof. 2

3 The mixed finite element method

In this section, we define explicit finite element subspaces H0,h of H0(div; Ω), and Qh of L2(Ω) such
that the corresponding mixed finite element scheme associated with the continuous formulation (2.12)
is well-posed and stable.
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3.1 Preliminaries

Let {Th}h>0 be a regular family of triangulations of the region Ω̄ ⊂ Rn by tetrahedrons T of diameter
hT such that Ω̄ = ∪{T : T ∈ Th}, and define h := max{hT : T ∈ Th}. The faces of the tetrahedrons
of Th are denoted by e and their corresponding diameters by he. Certainly, we are assuming here that
n = 3. In the case n = 2 we just need to replace tetrahedrons by triangles and faces by edges in
what follows. Now, given an integer ` ≥ 0 and a subset U of Rn, we denote by P`(U) the space of
polynomials defined in U of total degree at most `. According to the notation convention given in the
introduction, we denote P`(U) := [P`(U)]n and P`(U) := [P`(U)]n×n. Then, for each integer k ≥ 0
and for each T ∈ Th, we define the local Raviart-Thomas space of order k (see, e.g. [14], [42])

RTk(T ) := Pk(T ) ⊕ Pk(T ) x

where x =

( x1
...
xn

)
is a generic vector of Rn, and let RTk(Th) be the corresponding global space, that

is,

RTk(Th) :=
{
τ ∈ H(div; Ω) : (τi1, . . . , τin)t|T ∈ RTk(T ) ∀ i ∈ {1, . . . , n}, ∀ T ∈ Th

}
.

We also let Pk(Th) be the global space of piecewise polynomials of degree ≤ k, that is

Pk(Th) :=
{
v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀ T ∈ Th

}
. (3.1)

We now introduce the following finite element subspaces of H0, and Q, respectively,

H0,h := RTk(Th) ∩H0(div; Ω) =

{
τ h ∈ RTk(Th) :

∫
Ω

tr(τ h) = 0

}
,

Qh := Pk(Th) .

(3.2)

Then, the mixed finite element scheme associated with (2.12) reads : Find (ρh,uh) ∈ H0,h×Qh, such
that

a(ρh, τ h) + b(τ h,uh) = 〈τ hn ,g〉Γ ∀ τ h ∈ H0,h ,

b(ρh,vh) = −
∫

Ω
f · vh ∀ vh ∈ Qh .

(3.3)

We remark at this point that when k = 0 and n = 3 the number of unknowns N involved in (3.3)
behaves approximately as 9 times the number of tetrahedra of the triangulation. In fact, having in
mind that: each row of τ h ∈ RT0(Th) is locally defined by 4 degrees of freedom, most of the sides
of the triangulation belong to 2 tetrahedra each, and each vh ∈ P0(Th) is locally determined by 3
degrees of freedom, we find that N is asymptotically given by(4× 3

2
+ 3

)
× number of tetrahedra = 9× number of tetrahedra . (3.4)

In turn, it is easy to show (see, e.g. formulae given in [31, Section 3.3]) that the factor 9 changes
to 39 and 102 when k = 1 and k = 2, respectively. On the other hand, it is important to notice
that the identity (2.14) certainly suggests to approximate the symmetric stress tensor field σ by the
postprocessing formula

σh = ρh + ρt
h −

(
λ+ 2µ

nλ+ (n+ 1)µ
tr(ρh)− nλ+ 2µ

n|Ω|

∫
Γ

g · n
)
I . (3.5)

Moreover, in Section 3.3 below we propose a second-step postprocessed approximation of σh and
provide the corresponding error estimate.
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3.2 Solvability analysis

In order to provide the unique solvability of the Galerkin scheme (3.3), we need to introduce the
Raviart-Thomas interpolation operator (see [14], [42]), E k

h : H1(Ω) → RTk(Th), which, given τ ∈
H1(Ω), is characterized by the following identities:∫

e
E k
h (τ )n · p =

∫
e
τn · p ∀ face/edge e ∈ Th , ∀ p ∈ Pk(e) , when k ≥ 0 , (3.6)

and ∫
T

E k
h (τ ) : ξ =

∫
T
τ : ξ ∀ T ∈ Th , ∀ ξ ∈ Pk−1(T ) , when k ≥ 1 . (3.7)

Then, using (3.6) and (3.7), it is easy to show that

div(E k
h (τ )) = Pk

h( div(τ ) ), (3.8)

where Pk
h : L2(Ω)→ Qh is the L2(Ω) - orthogonal projector. The interpolation operator E k

h can also
be defined as a bounded linear operator from the larger space Hs(Ω)∩H(div; Ω) into RTk(Th) for all
s ∈ (0, 1] (see, e.g. Theorem 3.16 in [38]), and in this case there holds the following interpolation
error estimate

‖τ − E k
h (τ )‖0,T ≤ C hsT

{
‖τ‖s,T + ‖div(τ )‖0,T

}
∀ T ∈ Th . (3.9)

Furthermore, we need the following approximation properties of the operators Pk
h and E k

h . It is well
known (see, e.g. [22]) that for each v ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, there holds

‖v −Pk
h(v)‖0,T ≤ C hmT |v|m,T ∀ T ∈ Th . (3.10)

In addition, the operator E k
h satisfies the following approximation properties (see, e.g. [14], [42]): For

each τ ∈ Hm(Ω), with 1 ≤ m ≤ k + 1,

‖τ − E k
h (τ )‖0,T ≤ C hmT |τ |m,T ∀ T ∈ Th . (3.11)

For each τ ∈ H1(Ω) such that div(τ ) ∈ Hm(Ω) , with 0 ≤ m ≤ k + 1,

‖div(τ − E k
h (τ ))‖0,T ≤ C hmT |div(τ )|m,T ∀ T ∈ Th . (3.12)

For each τ ∈ H1(Ω), where Te is any tetrahedron/triangle of Th having e as a face/edge,

‖τν − E k
h (τ )ν‖0,e ≤ C h1/2

e ‖τ‖1,Te ∀ face/edge e ∈ Th . (3.13)

In particular, note that (3.12) follows easily from the property (3.8) and (3.10).

Then, as a consequence of (3.9), (3.10), (3.11), (3.12), (3.13), and the usual interpolation estimates,
we find that H0,h and Qh satisfy the following approximation properties:

(APρ
h) For each s ∈ (0, k + 1] and for each τ ∈ Hs(Ω) ∩H0(div; Ω) with div(τ ) ∈ Hs(Ω) there exists

τ h ∈ H0,h such that

‖τ − τ h‖div,Ω ≤ C hs
{
‖τ‖s,Ω + ‖div(τ )‖s,Ω

}
.

(APu
h) For each s ∈ [0, k + 1] and for each v ∈ Hs(Ω), there exists vh ∈ Qh such that

‖v − vh‖0,Ω ≤ C hs ‖v‖s,Ω .

Next, we establish the unique solvability, stability, and convergence of the Galerkin scheme (3.3) with
the finite element subspaces given by (3.2). We begin with the proof of the discrete inf-sup condition
for the bilinear form b.
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Lemma 3.1 Let H0,h and Qh be given by (3.2). Then, there exists β > 0, independent of h and λ,
such that

sup
τh∈H0,h

τh 6=0

b(τ h,vh)

‖τ h‖div;Ω
≥ β ‖vh‖0,Ω ∀ vh ∈ Qh .

Proof. See [36, Lemma 3.2]. 2

The following theorem establishes the well-posedness of (3.3) and the associated Céa estimate.

Theorem 3.1 The Galerkin scheme (3.3) has a unique solution (ρh,uh) ∈ H0,h×Qh, which satisfies

the corresponding stability and Céa estimates, i.e. there exist positive constants C, C̃, independent of
h and λ, such that

‖(ρh , uh)‖H0×Q ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
,

and
‖(ρ , u)− (ρh , uh)‖H0×Q ≤ C̃ inf

(τh,vh) ∈ H0,h ×Qh

‖(ρ , u)− (τ h , vh)‖H0×Q . (3.14)

Proof. Since div(H0,h) ⊆ Qh, we find that the discrete kernel of b is given by

Vh :=
{
τ h ∈ H0,h : b(τ h,vh) = 0 ∀ vh ∈ Qh

}
=
{
τ h ∈ H0,h : div(τ h) = 0 in Ω

}
⊆ V ,

which, thanks to (2.16), shows that a is strongly coercive in Vh. This fact, Lemma 3.1, and a direct
application of the discrete Babuška-Brezzi theory (see, e.g. [37, Theorem 1.1, Chapter II] or [14,
Theorem II.1.1]) complete the proof. 2

The following theorem provides the theoretical rate of convergence of the Galerkin scheme (3.3),
under suitable regularity assumptions on the exact solution.

Theorem 3.2 Let (ρ,u) ∈ H0×Q and (ρh,uh) ∈ H0,h×Qh be the unique solutions of the continuous
and discrete formulations (2.12) and (3.3), respectively. Assume that ρ ∈ Hs(Ω), div(ρ) ∈ Hs(Ω) and
u ∈ Hs(Ω), for some s ∈ (0, k + 1]. Then, there exists C > 0, independent of h, such that

‖(ρ,u)− (ρh,uh)‖H0×Q ≤ C hs
{
‖ρ‖s,Ω + ‖div(ρ)‖s,Ω + ‖u‖s,Ω

}
.

Proof. It is a straightforward consequence of the Céa estimate (3.14) and the approximation properties
(APρ

h) and (APu
h). 2

3.3 A fully postprocessed stress

We end this section by proposing a second-step postprocessed stress and deriving the corresponding
a priori error estimate. To do that, we first observe from (2.14) and (3.5) that there holds

‖σ − σh‖0,Ω ≤ (2 +
√
n) ‖ρ− ρh‖0,Ω, (3.15)

which shows that the rate of convergence of ‖σ − σh‖0,Ω is the same of ‖ρ − ρh‖0,Ω. Unfortunately,
numerical experiments (cf. Section 5) confirm that the rate of convergence of

∑
T∈Th

‖σ − σh‖2div;T

is of lower order than
∑
T∈Th

‖ρ − ρh‖2div;T . This fact has motivated the construction of a second

approximation for the stress variable σ, which has a better rate of convergence in the broken H(div)-
norm. Indeed, we first note that σh gives us a good approximation for σ in the L2-norm (cf. (3.15)).
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Hence, the problem lies on the approximation that div(σh) implies for div(σ). Furthermore, we know
from (2.1) that div(σ) = −f , and then we try to approximate div(σh) by −f in each T ∈ Th. The
above discussion suggests to define the following postprocessed approximation for σ: Given T ∈ Th,
we find σ?h |T := σ?h,T ∈ RTk(T ) such that

〈σ?h,T , τ h〉div;T :=

∫
T
σ?h,T : τ h +

∫
T

div(σ?h,T ) · div(τ h) =

∫
T
σh : τ h −

∫
T

f · div(τ h), (3.16)

for all τ h ∈ RTk(T ) :=
{
τ ∈ L2(T ) : (τi1, . . . , τin)t|T ∈ RTk(T ) ∀ i ∈ {1, . . . , n}

}
. It is important

to note that σ?h,T can be explicitly (and efficiently) calculated for each T ∈ Th independently. Moreover,
the following result establishes an estimate for the local error ‖σ − σ?h,T ‖div;T .

Lemma 3.2 Assume that σ|T ∈ H1(T ) for each T ∈ Th. Then there holds

‖σ − σ?h,T ‖div;T ≤ ‖σ − σh‖0,T + 2 ‖σ − E k
h,T (σ)‖div;T , (3.17)

where E k
h,T is the local Raviart-Thomas interpolation operator on T .

Proof. We first notice, using that div(σ) = −f in Ω, that there holds

〈σ, τ h〉div;T =

∫
T
σ : τ h −

∫
T

f · div(τ h) ∀ τ h ∈ RTk(T ),

which, using (3.16), implies the error equation:

〈σ − σ?h,T , τ h〉div;T =

∫
T

(σ − σh) : τ h ∀ τ h ∈ RTk(T ),

and then, adding E k
h,T (σ) to both sides and rearranging, we find that

〈E k
h,T (σ)− σ?h,T , τ h〉div;T =

∫
T

(σ − σh) : τ h + 〈E k
h,T (σ)− σ, τ h〉div;T ∀ τ h ∈ RTk(T ).

Next, taking τ h := E k
h,T (σ)−σ?h,T ∈ RTk(T ) in the above identity, and applying the Cauchy-Schwarz

inequality, we deduce that

‖E k
h,T (σ)− σ?h,T ‖div;T ≤ ‖σ − σh‖0,T + ‖σ − E k

h,T (σ)‖div;T . (3.18)

Finally, from the triangular inequality we note that

‖σ − σ?h,T ‖div;T ≤ ‖σ − E k
h,T (σ)‖div;T + ‖E k

h,T (σ)− σ?h,T ‖div;T ,

which, together with (3.18), yields (3.17) and complete the proof. 2

A straightforward consequence of the previous lemma is given by the following global rate of
convergence for σ?h.

Theorem 3.3 Let (ρ,u) ∈ H0×Q and (ρh,uh) ∈ H0,h×Qh be the unique solutions of the continuous
and discrete formulations (2.12) and (3.3), respectively. In addition, let σ be the stress tensor given by
(2.14), and let σh and σ?h be its discrete approximations introduced in (3.5) and (3.16), respectively.
Assume that ρ ∈ Hs(Ω), div(ρ) ∈ Hs(Ω), and u ∈ Hs(Ω), for some s ∈ (0, k + 1]. Then, there exists
C > 0, independent of h, such that∑

T∈Th

‖σ − σ?h‖2div;T


1/2

≤ C hs
{
‖ρ‖s,Ω + ‖div(ρ)‖s,Ω + ‖u‖s,Ω

}
.
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Proof. We first observe from (2.14) that the regularity of σ depends on the regularity of ρ. Indeed,
given ρ ∈ Hs(Ω), this establish that ρt ∈ Hs(Ω) and tr(ρ) ∈ Hs(Ω), which imply that σ ∈ Hs(Ω).
In addition, from the fact that div(σ) = div(ρ), we deduce that div(σ) ∈ Hs(Ω). Then, the proof
follows straightforwardly from the estimate (3.17), after summing up over T ∈ Th, using (3.11), (3.12)
and (3.15) together with Theorem 3.2. 2

4 A residual-based a posteriori error estimator

In this section we develop a residual-based a posteriori error analysis for the mixed finite element
scheme (3.3) with the subspaces H0,h and Qh defined by (3.2) for n = 3, in the case of convex
polyhedral domains. First we introduce several notations. Given T ∈ Th, we let E(T ) be the set of its
faces, and let Eh be the set of all faces of the triangulation Th. Then, we write Eh = Eh(Ω) ∪ Eh(Γ),
where Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(Γ) := {e ∈ Eh : e ⊆ Γ}. Also, for each face e ∈ Eh we fix a
unit normal to e. In addition, given e ∈ Eh(Ω) and τ ∈ L2(Ω) such that τ |T ∈ C(T ) on each T ∈ Th,
we let [[τ ×ne ]] be the corresponding jump across e, that is, [[τ ×ne ]] := (τ |T − τ |T ′)|e×ne, where T
and T ′ are the elements of Th having e as a common face. From now on, when no confusion arises, we
simple write n instead of ne. On the other hand, we recall that the curl of a 3D vector v := (v1, v2, v3)
is the 3D vector

curl(v) = ∇× v :=

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
.

Then, given a tensor function τ := (τij)3×3, the operator curl denotes the operator curl acting along
each row of τ , that is, curl(τ ) is the 3× 3 tensor whose rows are given by

curl(τ ) :=

 curl(τ11, τ12, τ13)
curl(τ21, τ22, τ23)
curl(τ31, τ32, τ33)

 .

Also, we denote by τ ×n, the 3× 3 tensor whose rows are given by the tangential components of each
row of τ , that is

τ × n :=

 (τ11, τ12, τ13)× n
(τ21, τ22, τ23)× n
(τ31, τ32, τ33)× n

 .

4.1 The a posteriori error estimator

Given (ρ,u) ∈ H0 × Q and (ρh,uh) ∈ H0,h × Qh be the unique solutions of the continuous and
discrete formulations (2.12) and (3.3), respectively, we define for each T ∈ Th a local error indicator
θT as follows:

θ2
T := ‖f + div(ρh)‖20,T + h2

T

∥∥∥∥∇uh −
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
− cg I

∥∥∥∥2

0,T

+ h2
T

∥∥∥∥curl

(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

})∥∥∥∥2

0,T

+
∑

e∈E(T )∩Eh(Ω)

he

∥∥∥∥[[( 1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)
× n

]]∥∥∥∥2

0,e
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+
∑

e∈E(T )∩Eh(Γ)

he

{∥∥∥∥∇g × n−
(

1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)
× n

∥∥∥∥2

0,e

+ ‖g − uh‖20,e

}
,

(4.1)
where

cg :=
1

3|Ω|

∫
Γ

g · n . (4.2)

The residual character of each term on the right hand side of (4.1) is quite clear from the continuous
identities provided in Section 2. As usual the expression

θ :=

∑
T∈Th

θ2
T


1/2

(4.3)

is employed as the global residual error estimator.

The following theorem constitutes the main result of this section.

Theorem 4.1 Assume that Ω is a convex polyhedral domain and that g ∈ H1(Γ). In addition, let
(ρ,u) ∈ H0 × Q and (ρh,uh) ∈ H0,h × Qh be the unique solutions of (2.12) and (3.3), respectively.
Then, there exist positive constants Ceff and Crel, independent of h and λ, such that

Ceff θ + h.o.t. ≤ ‖(ρ,u)− (ρh,uh)‖H0×Q ≤ Crel θ , (4.4)

where h.o.t. stands for one or several terms of higher order.

The proof of Theorem 4.1 is separated into the parts given by the next subsections. Firstly, we
prove the reliability (upper bound in (4.4)) of the global error estimator, and then in Subsection 4.3
we show the efficiency of the global error estimator (lower bound in (4.4)). We remark in advance
that the convexity assumption on Ω is required only for the reliability of θ.

4.2 Reliability

We begin with the following preliminary estimate.

Lemma 4.1 Let (ρ,u) ∈ H0×Q and (ρh,uh) ∈ H0,h×Qh be the unique solutions of (2.12) and (3.3),
respectively. Then there exists C > 0, independent of h, such that

C ‖(ρ− ρh,u− uh)‖H0×Q ≤ sup
τ∈H0
τ 6=0

|E(τ )|
‖τ‖H0

+ ‖f + div(ρh)‖0,Ω , (4.5)

where
E(τ ) := a(ρ− ρh, τ ) + b(τ ,u− uh) ∀ τ ∈ H0 . (4.6)

Proof. We first observe from Theorem 2.1 that the bounded linear operator A : H0×Q→ (H0×Q)′ ≡
H′0 ×Q′, which is induced by the left-hand side of the equations in (2.12), is an isomorphism. Then
there exists C > 0 such that

‖A(ξ,w)‖H′0×Q′ ≥ C‖(ξ,w)‖H0×Q ∀ (ξ,w) ∈ H0 ×Q .

Equivalently

C ‖(ξ,w)‖H0×Q ≤ sup
(τ ,v)∈H0×Q

(τ ,v)6=0

a(ξ, τ ) + b(τ ,w) + b(ξ,v)

‖(τ ,v)‖H0×Q
∀ (ξ,w) ∈ H0 ×Q .
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In particular, for the error (ξ,w) := (ρ− ρh,u− uh), and using the notation introduced by (4.6) we
have

C ‖(ρ− ρh,u− uh)‖H0×Q ≤ sup
(τ ,v)∈H0×Q

(τ ,v)6=0

a(ρ− ρh, τ ) + b(τ ,u− uh) + b(ρ− ρh,v)

‖(τ ,v)‖H0×Q

≤ sup
(τ ,v)∈H0×Q

(τ ,v)6=0

{
E(τ )

‖τ‖H0

+
b(ρ− ρh,v)

‖v‖Q

}
≤ sup

τ∈H0
τ 6=0

E(τ )

‖τ‖H0

+ sup
v∈Q
v 6=0

b(ρ− ρh,v)

‖v‖Q
.

In turn, according to the definition of the bilinear operator b (cf. (2.7)), and using Cauchy-Schwarz
inequality, and the second equation of (2.5), we get

sup
v∈Q
v 6=0

b(ρ− ρh,v)

‖v‖Q
= sup

v∈Q
v 6=0

−
∫

Ω
v ·
{

f + div(ρh)
}

‖v‖Q
≤ ‖f + div(ρh)‖0,Ω ,

which, completes the proof of (4.5). 2

Our next goal is to estimate the supremum in (4.5). For this purpose, we now deduce from the
first equations of (2.12) and (3.3) that

E(τ ) = F (τ )− a(ρh, τ )− b(τ ,uh) ∀ τ ∈ H0 , and E(τ h) = 0 ∀ τ h ∈ H0,h ,

whence, given a particular τ h ∈ H0,h, and denoting τ̂ := τ − τ h, we can write

E(τ ) = E(τ̂ ) = 〈τ̂n ,g〉Γ −
1

µ

∫
Ω
ρd
h : τ̂ d − 1

3(3λ+ 4µ)

∫
Ω

tr(ρh) tr(τ̂ )−
∫

Ω
uh · div(τ̂ ) . (4.7)

In this way, estimating the supremum in (4.5) reduces now to bound |E(τ̂ )| for a suitable choice of
τ h ∈ H0,h (cf. (3.2)). To this end, we will need the Clément interpolation operator Ih : H1(Ω)→ Xh

(cf. [23]), where

Xh :=
{
v ∈ C(Ω̄) : v|T ∈ P1(T ) ∀ T ∈ Th

}
.

A vectorial version of Ih, say Ih : H1(Ω) → Xh := [Xh]3, which is defined componentwise by Ih, is
also required. The following lemma establishes the local approximation properties of Ih.

Lemma 4.2 There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there
holds

‖v − Ih(v)‖0,T ≤ c1 hT ‖v‖1,4(T ) ∀ T ∈ Th ,

and
‖v − Ih(v)‖0,e ≤ c2 h

1/2
e ‖v‖1,4(e) ∀ e ∈ Eh ,

where 4(T ) := ∪{T ′ ∈ Th : T ′ ∩ T 6= ∅} and 4(e) := ∪{T ′ ∈ Th : T ′ ∩ e 6= ∅}.

Proof. See [23]. 2

Now we are in conditions to estimate E(τ̂ ) (cf. (4.7)). To do that, we let τ ∈ H0 and bound |E(τ̂ )|
for a specific τ h ∈ H0,h. More precisely, a Helmholtz decomposition of τ suggests to define τ h through
what we call a discrete Helmholtz decomposition. Indeed, let Ω0 be a convex domain containing Ω,
define the function f0 ∈ L2(Ω0) by

f0 :=

{
div(τ ) in Ω

0 in Ω0 \ Ω̄ ,
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and let z ∈ H1
0(Ω0) be the unique weak solution of the boundary value problem:

∆z = f0 in Ω0 , z = 0 on ∂Ω0 .

The corresponding regularity result for elliptic problems implies that z ∈ H2(Ω0) and

‖z‖2,Ω0 ≤ C ‖f0‖0,Ω0 = C ‖div(τ )‖0,Ω .

It follows that ∇z|Ω ∈ H1(Ω), div(∇z) = div(τ ) in Ω, and

‖∇z‖1,Ω ≤ ‖z‖2,Ω ≤ C ‖div(τ )‖0,Ω . (4.8)

In addition, since div(τ−∇z) = 0 in Ω, and Ω is connected, there exist χi := (χi1, χi2, χi3)t ∈ H1(Ω),

i ∈ {1, 2, 3}, such that τ −∇z = curl(χ) in Ω, where χ :=

(χ1
χ2
χ3

)
∈ H1(Ω). Moreover, the potentials

χi can be chosen so that, thanks to the convexity of Ω and the estimate provided in [48, Proposition
4.52] (see also [3, Theorems 2.17 and 3.12] for the original reference), there holds

‖χ‖1,Ω ≤ C̃ ‖τ‖div;Ω , (4.9)

with a positive constant C̃ independent of τ and χ. Note here that (4.8) and (4.9) constitute the
stability estimates of the continuous Helmholtz decomposition given by the identity τ = ∇z + curl(χ)
in Ω. We also remark that inequality (4.9) is the only place of the present a posteriori error analysis
where the convexity of Ω is employed. Nevertheless, we provide below in Section 5 extensive numerical
evidences allowing to conjecture that this might very well be just a technical assumption for the proof
of (4.9) and the consequent reliability of θ.

Next, we let χh :=

(χ1h
χ2h
χ3h

)
, where χih := Ih(χi), i ∈ {1, 2, 3}, and define

τ h := E k
h (∇z) + curl(χh) − c̃ I , (4.10)

where E k
h is the Raviart-Thomas interpolation operator introduced before (cf. (3.6) and (3.7)), and

the constant c̃ is chosen so that τ h, which is already in RTk(Th), belongs to H0,h. Equivalently, τ h
is the H0-component of E k

h (∇z) + curl(χh) ∈ RTk(Th). According to the aforementioned Helmholtz
decomposition of τ , we refer to (4.10) as a discrete Helmholtz decomposition of τ h.

Therefore, we can write

τ̂ := ∇z − E k
h (∇z) + curl(χ− χh) + c̃ I , (4.11)

which, using the property (3.8), yields

div(τ̂ ) = div(∇z− E k
h (∇z)) = (I−Pk

h)(div(∇z)) = (I−Pk
h)(div(τ )) . (4.12)

Hence, replacing (4.11) and (4.12) into (4.7), and noting, according to (3.1) and (3.8), that∫
Ω

uh · div(∇ z− E k
h (∇ z)) =

∫
Ω

uh · (I−Pk
h)(div(τ )) = 0 ,

we find that E(τ̂ ) (cf. (4.7)) can be decomposed as

E(τ̂ ) = E1(z) + E2(χ) , (4.13)
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where

E1(z) := 〈(∇ z− E k
h (∇ z))n,g〉Γ − cg

∫
Ω

tr(∇ z− E k
h (∇ z))

− 1

µ

∫
Ω
ρd
h : (∇ z− E k

h (∇ z)) − 1

3(3λ+ 4µ)

∫
Ω

tr(ρh) tr(∇z− E k
h (∇z)) ,

and

E2(χ) := 〈curl(χ− χh)n,g〉Γ − cg
∫

Ω
tr(curl(χ− χh))

− 1

µ

∫
Ω
ρd
h : curl(χ− χh) − 1

3(3λ+ 4µ)

∫
Ω

tr(ρh) tr(curl(χ− χh)) ,

with cg givens by (4.2).

Furthermore, we note from the definition of ρd
h and the equality tr(τ ) = τ : I, that

E1(z) = 〈(∇ z−E k
h (∇ z))n,g〉Γ −

∫
Ω

(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)
: (∇ z−E k

h (∇ z)) , (4.14)

and

E2(χ) = 〈curl(χ− χh)n,g〉Γ −
∫

Ω

(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)
: curl(χ− χh) . (4.15)

The following two lemmas provide upper bounds for |E1(z)| and |E2(χ)|.

Lemma 4.3 There exists C > 0, independent of λ and h, such that

|E1(z)| ≤ C

∑
T∈Th

θ2
1,T


1/2

‖τ‖div,Ω , (4.16)

where

θ2
1,T := h2

T

∥∥∥∥∇uh −
(

1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)∥∥∥∥2

0,T

+
∑

e∈E(T )∩Eh(Γ)

he ‖g − uh‖20,e .

Proof. Since ∇z ∈ H1(Ω), it follows that (∇z − E k
h (∇z))n|Γ belongs to L2(Γ), whence E1(z) (cf.

(4.14)) can be redefined as:

E1(z) =
∑

e∈Eh(Γ)

∫
e
(∇z− E k

h (∇z))n · g

−
∫

Ω

(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)
: (∇z− E k

h (∇z)) .

(4.17)

On the other hand, since uh|e ∈ Pk(e) for each face e ∈ Eh (in particular for each face e ∈ Eh(Γ)), and
∇uh|T ∈ Pk−1(T ) for each T ∈ Th, the identities (3.6) and (3.7) characterizing E k

h , yield, respectively,∫
e
(∇z− E k

h (∇z)) n · uh = 0 ∀ e ∈ Eh(Γ) ,

and ∫
T

(∇z− E k
h (∇z)) : ∇uh = 0 ∀ T ∈ Th .
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Hence, introducing the above expressions into (4.17), we can write E1(z) as

E1(z) =
∑

e∈Eh(Γ)

∫
e
(∇ z− E k

h (∇ z))n · (g − uh)

+
∑
T∈Th

∫
T

[
∇uh −

(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)]
: (∇ z− E k

h (∇ z)) .

Finally, applying the Cauchy-Schwarz inequality, the approximation properties (3.11) (with m = 1)
and (3.13), and then the fact that ‖∇z‖1,Ω ≤ C‖div(z)‖0,Ω, we obtain the upper bound (4.16). 2

Lemma 4.4 Assume that g ∈ H1(Γ). Then, there exists C > 0, independent of λ and h, such that

|E2(χ)| ≤ C

∑
T∈Th

θ2
2,T


1/2

‖τ‖div;Ω , (4.18)

where

θ2
2,T := h2

T

∥∥∥∥curl

(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

})∥∥∥∥2

0,T

+
∑

e∈E(T )∩Eh(Ω)

he

∥∥∥∥[[( 1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)
× n

]]∥∥∥∥2

0,e

+
∑

e∈E(T )∩Eh(Γ)

he

∥∥∥∥∇g × n−
(

1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)
× n

∥∥∥∥2

0,e

.

Proof. Using the fact that curl(χ − χh) n = div ((χ− χh)× n), and then integrating by parts on
Γ, we find that

〈curl(χ− χh) n,g〉Γ = 〈χ− χh,∇g × n〉Γ =
∑

e∈Eh(Γ)

∫
e
(χ− χh) : (∇g × n) .

Next, integrating by parts on each T ∈ Th, we obtain that∫
Ω

(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)
: curl(χ− χh)

=
∑
T∈Th

[∫
T

curl

(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

})
: (χ− χh)

+

∫
∂T

(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)
× n : (χ− χh)

]
=
∑
T∈Th

∫
T

curl

(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

})
: (χ− χh)

+
∑

e∈Eh(Ω)

∫
e

[[(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)
× n

]]
: (χ− χh)

+
∑

e∈Eh(Γ)

∫
e

(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)
× n : (χ− χh) .
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Hence, replacing the above expressions into (4.15), we can write

E2(χ) = −
∑
T∈Th

∫
T

curl

(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

})
: (χ− χh)

−
∑

e∈Eh(Ω)

∫
e

[[(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)
× n

]]
: (χ− χh)

+
∑

e∈Eh(Γ)

∫
e

[
∇g × n−

(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)
× n

]
: (χ− χh) .

In addition, since χh := Ih(χ), the approximation properties of Ih (cf. Lemma 4.2) yields

‖χ− χh‖0,T ≤ c1 hT ‖χ‖1,4(T ) ∀ T ∈ Th , (4.19)

and
‖χ− χh‖0,e ≤ c2 h

1/2
e ‖χ‖1,4(e) ∀ e ∈ Eh . (4.20)

Thus, applying the Cauchy-Schwarz inequality to each term in the above expression for E2(χ), and
making use of the estimate (4.19), (4.20) and (4.9), together with the fact that 4(T ) and 4(e) are
bounded (since {Th}h>0 is shape-regular), we derive the upper bound (4.18). 2

Finally, it follows from the decomposition (4.13) of E and Lemmas 4.3 and 4.4 that

|E(τ̂ )| ≤ C

∑
T∈Th

(θ2
1,T + θ2

2,T )


1/2

‖τ‖div;Ω ∀ τ ∈ H0 ,

which, gives an upper bound for the supremum on the right hand side of (4.5) (cf. Lemma 4.1).

In this way, and noting that

‖f + div(ρh)‖20,Ω =
∑
T∈Th

‖f + div(ρh)‖20,T ,

we conclude from Lemma 4.1 the reliability of θ (upper bound in (4.4)).

4.3 Efficiency

In this section we prove the efficiency of our a posteriori error estimator θ (lower bound in (4.4)). In
other words, we derive suitable upper bounds for the six terms defining the local error indicator θ2

T

(cf. (4.1)). We first notice, using that f = −div(ρ) in Ω, that there holds

‖f + div(ρh)‖20,T = ‖div(ρ− ρh)‖20,T ≤ ‖ρ− ρh‖2div;T . (4.21)

Next, in order to bound the terms involving the mesh parameters hT and he, we proceed similarly as
in [20] and [21] (see also [28]), and apply results ultimately based on inverse inequalities (see [22]) and
the localization technique introduced in [47], which is based on tetrahedron-bubble and face-bubble
functions. To this end, we now introduce further notations and preliminary results. Given T ∈ Th and
e ∈ E(T ), we let ψT and ψe be the usual tetrahedron-bubble and face-bubble functions, respectively
(see (1.5) and (1.6) in [47]), which satisfy:

i) ψT ∈ P4(T ), supp(ψT ) ⊆ T , ψT = 0 on ∂T , and 0 ≤ ψT ≤ 1 in T .
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ii) ψe|T ∈ P3(T ), supp(ψe) ⊆ ωe := ∪{T ′ ∈ Th : e ∈ E(T ′)}, ψe = 0 on ∂T \ e, and 0 ≤ ψe ≤ 1 in
ωe.

We also recall from [46] that, given k ∈ N ∪ {0}, there exists a linear operator L : C(e)→ C(T ) that
satisfies L(p) ∈ Pk(T ) and L(p)|e = p ∀ p ∈ Pk(e). A corresponding vectorial version of L, that
is the componentwise application of L, is denoted by L. Additional properties of ψT , ψe and L are
collected in the following lemma.

Lemma 4.5 Given k ∈ N ∪ {0}, there exist positive constants c1, c2, and c3, depending only on k
and the shape regularity of the triangulations (minimum angle condition), such that for each T ∈ Th
and e ∈ E(T ), there hold

‖q‖20,T ≤ c1 ‖ψ1/2
T q‖20,T ∀ q ∈ Pk(T ) , (4.22)

‖p‖20,e ≤ c2 ‖ψ1/2
e p‖20,e ∀ p ∈ Pk(e) , (4.23)

and
‖ψ1/2

e L(p)‖20,T ≤ c3 he ‖p‖20,e ∀ p ∈ Pk(e) . (4.24)

Proof. See [46, Lemma 4.1]. 2

The following inverse estimate will also be used.

Lemma 4.6 Let `,m ∈ N∪{0} such that ` ≤ m. Then, there exists c4 > 0, depending only on k, `,m
and the shape regularity of the triangulations, such that for each T ∈ Th there holds

|q|m,T ≤ c4 h
`−m
T |q|`,T ∀ q ∈ Pk(T ) . (4.25)

Proof. See [22, Theorem 3.2.6]. 2

In order to bound the boundary term of the local error estimator θT given by he ‖g − uh‖20,e,
e ∈ Eh(Γ), we will need the following discrete trace inequality.

Lemma 4.7 There exists c5 > 0, depending only on the shape regularity of the triangulations, such
that for each T ∈ Th and e ∈ E(T ), there holds

‖v‖20,e ≤ c5

{
h−1
e ‖v‖20,T + he |v|21,T

}
∀ v ∈ H1(T ) . (4.26)

Proof. See [2, Theorem 3.10] or [4, equation (2.4)]. 2

Lemma 4.8 Let ζh ∈ L2(Ω) be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th. In addition,
let ζ ∈ L2(Ω) be such that curl(ζ) = 0 on each T ∈ Th. Then, there exists c6 > 0, independent of h,
such that

‖curl(ζh)‖0,T ≤ c6 h
−1
T ‖ζ − ζh‖0,T ∀ T ∈ Th . (4.27)

Proof. We adapt the proof of [12, Lemma 4.3]. Indeed, applying (4.22), integrating by parts, recalling
that ψT = 0 on ∂T , and using the Cauchy-Schwarz inequality, we obtain

‖curl(ζh)‖20,T ≤ c1‖ψ1/2
T curl(ζh)‖20,T = c1

∫
T

curl(ζh − ζ) : ψT curl(ζh)

= c1

∫
T

(ζh − ζ) : curl(ψT curl(ζh)) ≤ c1‖ζ − ζh‖0,T ‖curl(ψT curl(ζh))‖0,T .

From the inverse estimate (4.25) and the fact that 0 ≤ ψT ≤ 1, it follows

‖curl(ψT curl(ζh))‖0,T ≤ c̃4 h
−1
T ‖ψT curl(ζh)‖0,T ≤ c̃4 h

−1
T ‖curl(ζh)‖0,T ,

where c̃4 depends only on c4 (see (4.25)). This proves the lemma with c6 := c1c̃4. 2
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Lemma 4.9 Let ζh ∈ L2(Ω) be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th, and let
ζ ∈ L2(Ω) be such that curl(ζ) = 0 in Ω. Then, there exists c7 > 0, independent of h, such that

‖[[ζh × n]]‖0,e ≤ c7 h
−1/2
e ‖ζ − ζh‖0,ωe ∀ e ∈ Eh . (4.28)

Proof. We adapt the proof of [12, Lemma 4.4]. Given a face e ∈ Eh, we denote rh := [[ζh × n]]
the corresponding tangential jump of ζh. Then, employing (4.23) and integrating by parts on each
tetrahedron of ωe, we obtain

c−1
2 ‖rh‖

2
0,e ≤ ‖ψ1/2

e rh‖20,e = ‖ψ1/2
e L(rh)‖20,e =

∫
e
ψeL(rh) : [[ζh × n]]

= −
∫
ωe

ψeL(rh) : curl(ζh) +

∫
ωe

curl(ψeL(rh)) : ζh .

Next, since [[ζ × n]] = 0, we deduce that

0 = −
∫
ωe

ψeL(rh) : curl(ζ) +

∫
ωe

curl(ψeL(rh)) : ζ ,

and therefore

c−1
2 ‖rh‖

2
0,e ≤

∫
ωe

ψeL(rh) : curl(ζ − ζh)−
∫
ωe

curl(ψeL(rh)) : (ζ − ζh)

= −
∫
ωe

ψeL(rh) : curl(ζh)−
∫
ωe

curl(ψeL(rh)) : (ζ − ζh) ,

which, using the Cauchy-Schwarz inequality, yields

c−1
2 ‖rh‖

2
0,e ≤ ‖ψeL(rh)‖0,ωe‖curl(ζh)‖0,ωe + ‖curl(ψeL(rh))‖0,ωe‖ζ − ζh‖0,ωe .

Now, applying Lemma 4.8 to each element of ωe, and using the fact that h−1
Te
≤ h−1

e , it follows the
existence of a constant c̃6 > 0 that depends only on c6 (see (4.27)) such that

‖curl(ζh)‖0,ωe ≤ c̃6 h
−1
e ‖ζ − ζh‖0,ωe . (4.29)

On the other hand, from inverse estimate (4.25) applied to each element of ωe, there exists a constant
c̃4 > 0 that depends only on c4 (see (4.25)) such that

‖curl(ψeL(rh))‖0,ωe ≤ c̃4 h
−1
e ‖ψeL(rh)‖0,ωe , (4.30)

whereas employing (4.24) and the fact that 0 ≤ ψe ≤ 1, we deduce that

‖ψeL(rh)‖0,ωe ≤ c
1/2
3 h1/2

e ‖rh‖0,e . (4.31)

Finally (4.28) follows easily from (4.29), (4.30) and (4.31), with c7 := c2c
1/2
3 max{c̃4, c̃6}. 2

We now apply Lemmas 4.8 and 4.9 to bound the other two terms defining θ2
T . For this purpose,

we define for each T ∈ Th the tensors

ζh :=
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I in T (4.32)

and

ζ :=
1

µ

{
ρ− λ+ µ

3λ+ 4µ
tr(ρ) I

}
+ cg I in T , (4.33)

21



then, using the triangular inequality, the fact that
λ+ µ

3λ+ 4µ
< 1, and the continuity of τ 7→ tr(τ ), we

readily deduce that

‖ζ − ζh‖0,T ≤
4

µ
‖ρ− ρh‖0,T ∀ T ∈ Th . (4.34)

Lemma 4.10 There exist C1, C2 > 0, independent of h and λ, such that

h2
T

∥∥∥∥curl

(
1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

})∥∥∥∥2

0,T

≤ C1 ‖ρ− ρh‖20,T ∀ T ∈ Th (4.35)

and

he

∥∥∥∥[[( 1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)
× n

]]∥∥∥∥2

0,e

≤ C2 ‖ρ− ρh‖20,ωe
∀ e ∈ Eh(Ω). (4.36)

Proof. We begin by applying Lemma 4.8 to the tensors (4.32) and (4.33), and then using (4.34), we
obtain (4.35) with C1 := 16

µ2
c6. Analogously, applying Lemma 4.9 to the tensors (4.32) and (4.33), and

then using (4.34), we obtain (4.36) with C2 := 16
µ2
c7. 2

The remaining three terms are bounded next. For this purpose, we will apply Lemmas 4.5, 4.6
and 4.7.

Lemma 4.11 There exists C3 > 0, independent of h and λ, such that for each T ∈ Th

h2
T

∥∥∥∥∇uh −
(

1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
+ cg I

)∥∥∥∥2

0,T

≤ C3

{
‖u− uh‖20,T + h2

T ‖ρ− ρh‖20,T
}
.

(4.37)

Proof. We adapt the proof of [32, Lemma 4.13]. In fact, given T ∈ Th, we denote χT := ∇uh − ζh
in T , where ζh is given by (4.32). Then, applying (4.22), using that ∇u = ζ in Ω, where ζ is given by
(4.33), and integrating by parts, we find that

‖χT ‖20,T ≤ c1 ‖ψ1/2
T χT ‖20,T = c1

∫
T
ψT χT : (∇uh − ζh)

= c1

∫
T
ψT χT :

{
∇(uh − u) + (ζ − ζh)

}
= c1

{∫
T

div(ψT χT ) · (u− uh) +

∫
T
ψT χT : (ζ − ζh)

}
.

Then, applying the Cauchy-Schwarz inequality, the inverse estimate (4.25), the fact that 0 ≤ ψT ≤ 1,
and the estimate (4.34), we get

‖χT ‖20,T ≤ c1

{
(3c̄4)1/2 h−1

T ‖u− uh‖0,T +
4

µ
‖ρ− ρh‖0,T

}
‖χT ‖0,T ,

where c̄4 is a constant that depends only on c4 (see (4.25)). Hence,

h2
T ‖χT ‖0,T ≤ C3

{
‖u− uh‖20,T + h2

T ‖ρ− ρh‖20,T
}
,

where C3 := c2
1

(
4
√

3c̄4
µ + max

{
3c̄4,

16
µ2

})
is independent of h and λ, which completes the proof. 2
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Lemma 4.12 Assume that g is piecewise polynomial. Then, there exists C4 > 0, independent of h
and λ, such that for each e ∈ Eh(Γ) there holds

he

∥∥∥∥(∇g − 1

µ

{
ρh −

λ+ µ

3λ+ 4µ
tr(ρh) I

}
− cg I

)
× n

∥∥∥∥2

0,e

≤ C4 ‖ρ− ρh‖20,Te , (4.38)

where Te is the tetrahedron of Th having e as a face.

Proof. Given e ∈ Eh(Γ) we denote χe := (∇g−ζh)×n on e. Then, applying (4.23) and the extension
operator L : C(e)→ C(T ), we obtain that

‖χe‖20,e ≤ c2 ‖ψ1/2
e χe‖20,e = c2

∫
e
ψeχe :

{
(∇g − ζh)× n

}
= c2

∫
∂Te

ψe L(χe) :
{

(∇u− ζh)× n
}
.

Now, integrating by parts, and using that ∇u = ζ in Te, we find that∫
∂Te

ψe L(χe) :
{

(∇u− ζh)× n
}

=

∫
Te

(ζ − ζh) : curl(ψe L(χe)) +

∫
Te

curl(ζh) : ψe L(χe) .

Then, applying the Cauchy-Schwarz inequality, the inverse estimate (4.25) and Lemma 4.8, we deduce
that

‖χe‖20,e ≤ c2(c4 + c6)h−1
Te
‖ζ − ζh‖0,Te‖ψeL(χe)‖0,Te .

In turn, recalling that 0 ≤ ψe ≤ 1 and using (4.24), we can write

‖ψeL(χe)‖0,Te ≤ ‖ψ1/2
e L(χe)‖0,Te ≤ c

1/2
3 h1/2

e ‖χe‖0,Te ,

which, combined with the foregoing inequality, the fact that he ≤ hTe , and the estimate (4.34), yield

he ‖χe‖20,e ≤
16

µ2
c2

2c3(c4 + c6)2 ‖ρ− ρh)‖20,Te .

This completes the proof of (4.38) with C4 := 16
µ2
c2

2c3(c4 + c6)2 . 2

We remark here that if g were not piecewise polynomial but sufficiently smooth, then higher order
terms given by the errors arising from suitable polynomial approximations would appear in (4.4). This
explains the eventual expression h.o.t. in (4.4).

Lemma 4.13 There exists C5 > 0, independent of h and λ, such that for each e ∈ Eh(Γ) there holds

he ‖g − uh‖20,e ≤ C5

{
‖u− uh‖20,Te + h2

Te ‖ρ− ρh‖20,Te
}
, (4.39)

where Te is the tetrahedron of Th having e as a face.

Proof. We adapt the proof of [36, Lemma 4.14]. Indeed, applying the discrete trace inequality given
by (4.26) of Lemma 4.7, together with the fact that u = g on Γ and ∇u = ζ in Ω, we easily obtain
that for each e ∈ Eh(Γ) there holds

‖g − uh‖20,e = ‖u− uh‖20,e ≤ c5

{
h−1
e ‖u− uh‖20,Te + he|u− uh|21,Te

}
= c5

{
h−1
e ‖u− uh‖20,Te + he‖∇u−∇uh‖20,Te

}
≤ c5

{
h−1
e ‖u− uh‖20,Te + he‖ζ − ζh + ζh −∇uh‖20,Te

}
= c5

{
h−1
e ‖u− uh‖20,Te + 2he

{
‖ζ − ζh‖20,Te + ‖∇uh − ζh‖20,Te

}}
,
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which, using that he ≤ hTe , gives

he ‖g − uh‖20,e ≤ c5

{
‖u− uh‖20,Te + 2h2

Te

{
‖ζ − ζh‖20,Te + ‖∇uh − ζh‖20,Te

}}
.

This estimate, the upper bound given by (4.34), and Lemma 4.11 yield (4.39) with the constant
C5 := c5 (2C3 + max{1, 32

µ }) . 2

Finally, the efficiency of θ follows straightforwardly from the estimate (4.21), together with Lemmas
4.10 throughout 4.13, after summing up over T ∈ Th and using that the number of tetrahedra on
each domain ωe is bounded by two.

5 Numerical results

In this section, we present some numerical results in R3 illustrating the performance of the mixed
finite element scheme (3.3), confirming the reliability and efficiency of the a posteriori error estimator
θ (cf. (4.3)) analyzed in Section 4, and showing the behaviour of the associated adaptive algorithm. In
all the computations we consider the specific finite element subspaces H0,h and Qh given by (3.2) with
k ∈ {0, 1, 2}. In addition, similarly as in [27] and [29], the zero integral mean condition for tensors in
the space H0,h is imposed via a real Lagrange multiplier.

We begin by introducing additional notations. In what follows N stands for the total number of
degrees of freedom (unknowns) of (3.3), which, as proved by (3.4) for k = 0 (see also [34, Section 4]),
behaves asymptotically as 9 times the number of tetrahedra of each triangulation. This factor increases
to 12.5 when we use the three-dimensional PEERS (see, e.g. [41, Definition 3.1]). In order to confirm
the above factor and those indicated for k = 1 and k = 2 right after (3.4), in all the numerical tables
to be displayed below we include a column with the ratio N/m, where m is the number of tetrahedra
of each triangulation. In turn, the individual and total errors of the unknowns pseudostress ρ and
displacement u are given by

e(ρ) := ‖ρ− ρh‖div;Ω , e(u) := ‖u− uh‖0,Ω , and e(ρ,u) :=
{

[e(ρ)]2 + [e(u)]2
}1/2

,

whereas the effectivity index with respect to θ is defined by

eff(θ) := e(ρ,u) / θ .

Then, we define the experimental rates of convergence

r(ρ) :=
log(e(ρ)/e′(ρ))

log(h/h′)
, r(u) :=

log(e(u)/e′(u))

log(h/h′)
, and r(ρ,u) :=

log(e(ρ,u)/e′(ρ,u))

log(h/h′)
,

where e and e′ denote the corresponding errors at two consecutive triangulations with mesh sizes h and
h′, respectively. However, when the adaptive algorithm is applied (see details below), the expression
log(h/h′) appearing in the computation of the above rates is replaced by −1

2 log(N/N ′), where N and
N ′, denote the corresponding degrees of freedom of each triangulation. In addition, we also define

e0(σ) := ‖σ − σh‖0,Ω , ediv(σ) :=

∑
T∈Th

‖σ − σh‖2div;T


1/2

,

e?0(σ) := ‖σ − σ?h‖0,Ω , and e?div(σ) :=

∑
T∈Th

‖σ − σ?h‖2div;T


1/2

,
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the corresponding errors of stress σ. Hence, similarly as before, we also denote by r0(σ), rdiv(σ),
r?0(σ) and r?div(σ), the experimental rates of convergence. Here, σh is the approximation given by
the postprocesing formula (3.5), whereas σ?h is introduced in (3.16).

Next, we recall that given the Young modulus E and the Poisson ratio ν of an isotropic linear
elastic solid, the corresponding Lamé parameters are defined as

µ :=
E

2(1 + ν)
and λ :=

Eν

(1 + ν)(1− 2ν)
.

In the examples we fix E = 1 and take ν ∈ {0.3000, 0.4900, 0.4999}, which gives the following values
of µ and λ:

ν µ λ

0.3000 0.3846 0.5769

0.4900 0.3356 16.4430

0.4999 0.3333 1666.4444

The cases ν = 0.4900 and ν = 0.4999 correspond to materials showing nearly incompressible behaviour.

The numerical results presented below were obtained using a C++ code. In turn, the linear sys-
tems were solved using the Conjugate Gradient method as main solver, and the individual errors are
computed on each tetrahedron using a Gaussian quadrature rule. For the adaptive mesh generation,
we use the software TetGen developed in [43]. The three examples to be considered in this section
are described next. Example 1 is employed to illustrate the performance of the mixed finite element
scheme and to confirm the reliability and efficiency of the a posteriori error estimator. Then, Example
2 and 3 are utilized to show the behaviour of the adaptive algorithm associated with θ, which apply
the following procedure from [47]:

(1) Start with a coarse mesh Th.

(2) Solve the discrete problem (3.3) for the actual mesh Th.

(3) Compute θT for each tetrahedron T ∈ Th.

(4) Evaluate stopping criterion (θ ≤ given tolerance) and decide to finish or go to next step.

(5) Use blue-green procedure to refine each T ′ ∈ Th whose indicator θT ′ satisfies

θT ′ ≥
1

2
max {θT : T ∈ Th} .

(6) Define resulting mesh as actual mesh Th and go to step 2.

We take the domain Ω either as the unit cube ]0, 1[3, the L-shaped domain

]−1/2, 1/2[ × ]0, 1[ × ]−1/2, 1/2[ \
(

]0, 1/2[ × ]0, 1[ × ]0, 1/2[
)
,

or the T -shaped domain

]−1, 1[ × ]−1, 1[ × ]0, 1[ \
(

]−1,−1/3[ × ]−1, 1/2[ × ]0, 1[ ∪ ]1/3, 1[ × ]−1, 1/2[ × ]0, 1[
)
,

and choose f and g so that the Poisson ratio ν and the exact solution u are given as follows:
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Example Ω ν u(x1, x2, x3)

1 Unit cube 0.4900 (x2
1 + 1)(x2

2 + 1)(x2
3 + 1)ex1+x2+x3

 1
1
1



2 L-shaped 0.3000


ex2 (x3 − 0.1) (x1 + 1)2 / r

ex2 (x1 + 1)2 r

−ex2 (x1 + 1) (150x2
1 + 25x1 + 100x2

3 − 20x3 − 3) / (50r)



3 T -shaped 0.4999


(x1 + 0.38)/r1 + (x1 − 0.38)/r2

(x2 − 0.45)(1/r1 + 1/r2)

(x3 − 1.05)(1/r1 + 1/r2)



where r :=
√

(x1 − 0.1)2 + (x3 − 0.1)2 in Example 2, whereas

r1 :=
√

(x1 + 0.38)2 + (x2 − 0.45)2 + (x3 − 1.05)2

and
r2 :=

√
(x1 − 0.38)2 + (x2 − 0.45)2 + (x3 − 1.05)2

in Example 3. Note that the solution of Example 2 is singular at (0.1, x2, 0.1), and then we should
expect regions of high gradients around that line, which is the line in the middle corner of the L along
x2-axis. Similarly, the solution of Example 3 is singular at (−0.38, 0.45, 1.05) and (0.38, 0.45, 1.05),
which are the middle corners of the T with respect the plane x3 = 1.

In Tables 5.1 and 5.2, we summarize the convergence history of the mixed finite element scheme
(3.3) as applied to Example 1, for a sequence of quasi-uniform triangulations (generated as in [34]) of
the domain. We notice there that the rate of convergence O(hk+1) predicted by Theorems 3.2 and 3.3
(when s = k + 1) is attained by all the unknowns. In particular, these results confirm that our new
postprocessed stress σ∗h clearly improves in one power the non-satisfactory order provided by the first
approximation σh with respect to the broken H(div)-norm. In addition, as observed in the eighth
column of Table 5.1, the convergence of e(u) is a bit faster than expected, which is a special behaviour
of this particular solution u, as it is also mentioned in [34]. We also remark the good behaviour of
the a posteriori error estimator θ in this case. More precisely, in Table 5.1, we see that the effectivity
indices eff(θ) remain always bounded above and below, which illustrates the reliability and efficiency
result provided by Theorem 4.1.

Next, in Tables 5.3 - 5.10, we provide the convergence history of the quasi-uniform and adaptive
schemes as applied to Examples 2 and 3. We emphasize here, as announced right before the discrete
Helmholtz decomposition (4.10), that these two examples consider non-convex domains, which are not
fully covered by the a posteriori error analysis developed in Section 4. In other words, the reliability of
θ is not guaranteed in these cases, at least theoretically. However, the numerical results shown below
are far of being affected by the lack of convexity of the domain, and, on the contrary, they support the
conjecture identifying that requirement as a simple technical assumption. Now, the stopping criterion
in the adaptive refinements is θ ≤ 1.8 (k = 0), θ ≤ 0.6 (k = 1), and θ ≤ 0.4 (k = 2) for Example 2,
whereas θ ≤ 4000 (k = 0), θ ≤ 1200 (k = 1), and θ ≤ 900 (k = 2) for Example 3. We observe here
that the errors of the adaptive methods decrease faster than those obtained by the quasi-uniform ones.
This fact is better illustrated in Figures 5.1 and 5.4 where we display the errors e(ρ,u) and e?div(σ) vs.
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k h N N/m e(ρ) r(ρ) e(u) r(u) e(ρ,u) r(ρ,u) eff(θ)

0.4330 3745 9.753 8.89e+2 −− 3.76e+1 −− 8.90e+2 −− 0.2035
0.3464 7201 9.601 7.09e+2 1.01 2.61e+1 1.63 7.10e+2 1.01 0.1944
0.2887 12313 9.501 5.89e+2 1.02 1.92e+1 1.69 5.89e+2 1.02 0.1878
0.2474 19405 9.429 5.02e+2 1.03 1.47e+1 1.74 5.03e+2 1.03 0.1828

0 0.2165 28801 9.375 4.38e+2 1.03 1.16e+1 1.77 4.38e+2 1.03 0.1790
0.1925 40825 9.334 3.88e+2 1.03 9.39e-0 1.79 3.88e+2 1.03 0.1759
0.1732 55801 9.300 3.48e+2 1.03 7.76e-0 1.81 3.48e+2 1.03 0.1735
0.1575 74053 9.273 3.15e+2 1.03 6.52e-0 1.82 3.15e+2 1.03 0.1714
0.1443 95905 9.250 2.88e+2 1.03 5.56e-0 1.83 2.88e+2 1.03 0.1697
0.1332 121681 9.231 2.65e+2 1.03 4.80e-0 1.84 2.65e+2 1.03 0.1683

0.4330 15841 41.253 4.83e+1 −− 1.12e-0 −− 4.84e+1 −− 0.0536
0.3464 30601 40.801 3.09e+1 2.00 6.00e-1 2.80 3.09e+1 2.00 0.0523
0.2887 52489 40.501 2.15e+1 2.00 3.59e-1 2.81 2.15e+1 2.00 0.0516

1 0.2165 123265 40.125 1.21e+1 2.00 1.60e-1 2.81 1.21e+1 2.00 0.0506
0.1925 174961 40.000 9.56e-0 2.00 1.15e-1 2.80 9.56e-0 2.00 0.0503
0.1732 239401 39.900 7.74e-0 2.00 8.59e-2 2.78 7.74e-0 2.00 0.0501
0.1575 317989 39.818 6.40e-0 2.00 6.60e-2 2.76 6.40e-0 2.00 0.0499
0.1443 412129 39.750 5.38e-0 2.00 5.20e-2 2.74 5.38e-0 2.00 0.0497
0.1332 523225 39.692 4.58e-0 2.00 4.19e-2 2.72 4.59e-0 2.00 0.0496

0.4330 40897 106.503 1.89e-0 −− 3.17e-2 −− 1.89e-0 −− 0.0310
0.3464 79201 105.601 9.68e-1 3.00 1.35e-2 3.81 9.68e-1 3.00 0.0304
0.2887 136081 105.001 5.60e-1 3.00 6.77e-3 3.79 5.60e-1 3.00 0.0300

2 0.2165 320257 104.250 2.36e-1 2.99 2.31e-3 3.72 2.37e-1 2.99 0.0296
0.1925 454897 104.000 1.67e-1 2.98 1.49e-3 3.69 1.67e-1 2.98 0.0296
0.1732 622801 103.800 1.22e-1 2.95 1.02e-3 3.64 1.22e-1 2.95 0.0296
0.1575 827641 103.636 9.19e-2 2.98 7.20e-4 3.64 9.19e-2 2.98 0.0296
0.1443 1073089 103.500 7.09e-2 2.98 5.25e-4 3.63 7.09e-2 2.98 0.0293
0.1332 1362817 103.385 5.57e-2 3.01 3.93e-4 3.61 5.57e-2 3.01 0.0293

Table 5.1: Example 1, quasi-uniform scheme.

the degrees of freedom N for both refinements. In addition, the effectivity indices remain also bounded
from above and below, which confirms the reliability and efficiency of θ for the associated adaptive
algorithm as well. Some intermediate meshes obtained with this procedure are displayed in Figures
5.2 and 5.5. Notice here that the adapted meshes concentrate the refinements around the line (0, x2, 0)
in Example 2, and around the points (−1/3, 1/2, 1) and (1/3, 1/2, 1) in Example 3, which means that
the method is able to recognize the regions with high gradients of the solutions. Finally, in Figures
5.3 and 5.6, we display iso-surfaces for some components of the pseudostress ρh, the displacement uh,
and the stress tensor σh (or σ?h), for both examples.
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k h N e0(σ) r0(σ) ediv(σ) rdiv(σ) e?0(σ) r?0(σ) e?div(σ) r?div(σ)

0.4330 3745 6.44e+2 −− 1.80e+3 −− 6.08e+2 −− 9.34e+2 −−
0.3464 7201 5.22e+2 0.94 1.71e+3 0.23 4.93e+2 0.94 7.52e+2 0.97
0.2887 12313 4.37e+2 0.97 1.66e+3 0.17 4.13e+2 0.97 6.28e+2 0.99

0 0.2165 28801 3.29e+2 1.00 1.60e+3 0.10 3.11e+2 1.00 4.72e+2 1.00
0.1732 55801 2.62e+2 1.01 1.58e+3 0.06 2.48e+2 1.01 3.77e+2 1.00
0.1575 74053 2.38e+2 1.01 1.57e+3 0.05 2.25e+2 1.02 3.43e+2 1.01
0.1443 95905 2.18e+2 1.02 1.56e+3 0.05 2.06e+2 1.02 3.14e+2 1.01
0.1332 121681 2.01e+2 1.02 1.56e+3 0.04 1.90e+2 1.02 2.90e+2 1.01

0.4330 15841 3.47e+1 −− 6.91e+2 −− 3.04e+1 −− 5.09e+1 −−
0.3464 30601 2.26e+1 1.92 5.63e+2 0.92 1.98e+1 1.93 3.27e+1 1.97
0.2887 52489 1.59e+1 1.94 4.75e+2 0.93 1.39e+1 1.94 2.28e+1 1.98

1 0.2165 123265 9.05e-0 1.95 3.62e+2 0.95 7.94e-0 1.95 1.29e+1 1.98
0.1925 174961 7.19e-0 1.96 3.23e+2 0.95 6.31e-0 1.96 1.02e+1 1.98
0.1575 317989 4.85e-0 1.96 2.67e+2 0.96 4.26e-0 1.96 6.86e-0 1.99
0.1443 412129 4.09e-0 1.97 2.45e+2 0.97 3.59e-0 1.96 5.77e-0 1.99
0.1332 523225 3.49e-0 1.97 2.27e+2 0.97 3.06e-0 1.97 4.93e-0 1.99

0.4330 40897 1.41e-0 −− 4.87e+1 −− 1.21e-0 −− 1.99e-0 −−
0.3464 79201 7.31e-1 2.94 3.16e+1 1.93 6.28e-1 2.94 1.02e-0 2.98
0.2887 136081 4.27e-1 2.95 2.22e+1 1.94 3.66e-1 2.95 5.93e-1 2.98
0.2474 215209 2.71e-1 2.96 1.64e+1 1.95 2.32e-1 2.96 3.74e-1 2.99

2 0.2165 320257 1.82e-1 2.96 1.27e+1 1.96 1.56e-1 2.96 2.51e-1 2.99
0.1732 622801 9.40e-2 2.97 8.16e-0 1.97 8.06e-2 2.97 1.29e-1 2.99
0.1575 827641 7.07e-2 2.98 6.76e-0 1.97 6.07e-2 2.98 9.69e-2 2.99
0.1443 1073089 5.46e-2 2.98 5.69e-0 1.97 4.68e-2 2.99 7.47e-2 3.00
0.1332 1362817 4.29e-2 2.99 4.85e-0 2.00 3.68e-2 2.99 5.88e-2 3.00

Table 5.2: Example 1, quasi-uniform scheme for the postprocessed unknowns: σh and σ?h.

Figure 5.1: Example 2, e(ρ,u) vs. N (left) and e?div(σ) vs. N (right).
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k h N N/m e(ρ) r(ρ) e(u) r(u) e(ρ,u) r(ρ,u) eff(θ)

0.7500 757 10.514 6.58e-0 −− 6.65e-1 −− 6.62e-0 −− 0.3313
0.3750 5617 9.752 4.32e-0 0.61 3.34e-1 1.00 4.34e-0 0.61 0.3322
0.2500 18469 9.501 3.20e-0 0.74 2.21e-1 1.01 3.21e-0 0.74 0.3304
0.1875 43201 9.375 2.59e-0 0.75 1.66e-1 1.00 2.59e-0 0.75 0.3342
0.1500 83701 9.300 2.17e-0 0.78 1.33e-1 1.00 2.17e-0 0.78 0.3386
0.1250 143857 9.250 1.83e-0 0.94 1.11e-1 0.99 1.83e-0 0.94 0.3335
0.1071 227557 9.214 1.59e-0 0.91 9.49e-2 1.00 1.59e-0 0.91 0.3326
0.0938 338689 9.188 1.40e-0 0.92 8.30e-2 1.00 1.41e-0 0.92 0.3321
0.0833 481141 9.167 1.26e-0 0.93 7.38e-2 1.00 1.26e-0 0.93 0.3316

0 0.0750 658801 9.150 1.14e-0 0.90 6.64e-2 1.01 1.15e-0 0.90 0.3342
0.0682 875557 9.136 1.04e-0 0.96 6.03e-2 1.00 1.05e-0 0.96 0.3337
0.0625 1135297 9.125 9.57e-1 1.01 5.54e-2 0.99 9.58e-1 1.01 0.3304
0.0577 1441909 9.115 8.89e-1 0.92 5.11e-2 1.01 8.91e-1 0.92 0.3326
0.0536 1799281 9.107 8.24e-1 1.02 4.74e-2 0.99 8.26e-1 1.02 0.3298
0.0500 2211301 9.100 7.73e-1 0.93 4.43e-2 1.01 7.75e-1 0.93 0.3318
0.0469 2681857 9.094 7.24e-1 1.02 4.15e-2 0.99 7.25e-1 1.02 0.3293
0.0441 3214837 9.088 6.82e-1 0.98 3.91e-2 1.00 6.83e-1 0.98 0.3291
0.0417 3814129 9.083 6.45e-1 0.98 3.69e-2 1.00 6.46e-1 0.98 0.3289
0.0395 4483621 9.079 6.11e-1 1.00 3.50e-2 1.00 6.12e-1 1.00 0.3280
0.0375 5227201 9.075 5.81e-1 0.99 3.32e-2 1.00 5.82e-1 0.99 0.3272

0.7500 3133 43.514 3.46e-0 −− 1.08e-1 −− 3.46e-0 −− 0.2256
0.3750 23761 41.252 1.74e-0 0.99 3.59e-2 1.59 1.74e-0 0.99 0.2444
0.2500 78733 40.501 1.00e-0 1.36 1.77e-2 1.75 1.00e-0 1.36 0.2365
0.1875 184897 40.125 6.24e-1 1.65 1.03e-2 1.87 6.24e-1 1.65 0.2383

1 0.1500 359101 39.900 4.34e-1 1.63 6.51e-3 2.06 4.34e-1 1.63 0.2507
0.1250 618193 39.750 3.11e-1 1.82 4.67e-3 1.82 3.11e-1 1.82 0.2388
0.1071 979021 39.643 2.39e-1 1.71 3.46e-3 1.96 2.39e-1 1.71 0.2353
0.0938 1458433 39.563 1.88e-1 1.78 2.66e-3 1.96 1.88e-1 1.78 0.2359
0.0833 2073277 39.500 1.52e-1 1.83 2.11e-3 1.97 1.52e-1 1.83 0.2374
0.0750 2840401 39.450 1.26e-1 1.77 1.69e-3 2.09 1.26e-1 1.77 0.2418

0.7500 7993 111.014 2.01e-0 −− 3.81e-2 −− 2.01e-0 −− 0.1693
0.3750 61345 106.502 7.66e-1 1.40 9.87e-3 1.95 7.66e-1 1.40 0.1788

2 0.2500 204121 105.001 3.07e-1 2.25 3.37e-3 2.65 3.07e-1 2.25 0.1643
0.1875 480385 104.250 1.50e-1 2.48 1.44e-3 2.96 1.51e-1 2.48 0.1605
0.1500 934201 103.800 9.02e-2 2.29 7.39e-4 2.98 9.02e-2 2.29 0.1783
0.1250 1609633 103.500 5.65e-2 2.56 4.28e-4 2.99 5.65e-2 2.56 0.1734

Table 5.3: Example 2, quasi-uniform scheme.
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k h N e0(σ) r0(σ) ediv(σ) rdiv(σ) e?0(σ) r?0(σ) e?div(σ) r?div(σ)

0.7500 757 2.17e-0 −− 7.16e-0 −− 2.12e-0 −− 6.78e-0 −−
0.3750 5617 1.33e-0 0.71 5.06e-0 0.50 1.33e-0 0.67 4.44e-0 0.61
0.2500 18469 9.39e-1 0.86 4.12e-0 0.51 9.39e-1 0.86 3.28e-0 0.75
0.1875 43201 7.23e-1 0.91 3.65e-0 0.42 7.22e-1 0.91 2.64e-0 0.75
0.1500 83701 5.88e-1 0.93 3.36e-0 0.36 5.85e-1 0.94 2.21e-0 0.79
0.1250 143857 4.99e-1 0.90 3.15e-0 0.36 4.98e-1 0.89 1.86e-0 0.94
0.1071 227557 4.30e-1 0.96 3.02e-0 0.28 4.30e-1 0.96 1.62e-0 0.91
0.0938 338689 3.78e-1 0.97 2.93e-0 0.23 3.78e-1 0.97 1.43e-0 0.92
0.0833 481141 3.37e-1 0.97 2.86e-0 0.20 3.37e-1 0.97 1.28e-0 0.93

0 0.0750 658801 3.03e-1 1.00 2.81e-0 0.16 3.03e-1 1.01 1.17e-0 0.90
0.0682 875557 2.76e-1 0.98 2.77e-0 0.15 2.76e-1 0.98 1.06e-0 0.96
0.0625 1135297 2.54e-1 0.96 2.74e-0 0.13 2.54e-1 0.95 9.75e-1 1.01
0.0577 1441909 2.35e-1 1.01 2.72e-0 0.11 2.34e-1 1.02 9.06e-1 0.92
0.0536 1799281 2.18e-1 0.97 2.70e-0 0.10 2.18e-1 0.95 8.40e-1 1.02
0.0500 2211301 2.04e-1 1.01 2.68e-0 0.08 2.03e-1 1.02 7.88e-1 0.93
0.0469 2681857 1.91e-1 0.97 2.67e-0 0.08 1.91e-1 0.96 7.38e-1 1.02
0.0441 3214837 1.80e-1 0.99 2.66e-0 0.07 1.80e-1 0.99 6.95e-1 0.98
0.0417 3814129 1.70e-1 0.99 2.65e-0 0.06 1.70e-1 0.99 6.57e-1 0.98
0.0395 4483621 1.61e-1 1.00 2.64e-0 0.05 1.61e-1 1.00 6.23e-1 0.99
0.0375 5227201 1.53e-1 1.00 2.64e-0 0.04 1.53e-1 1.00 5.92e-1 0.99

0.7500 3133 1.02e-0 −− 6.04e-0 −− 1.04e-0 −− 3.56e-0 −−
0.3750 23761 4.42e-1 1.21 4.99e-0 0.28 4.57e-1 1.18 1.78e-0 1.00
0.2500 78733 2.36e-1 1.54 4.41e-0 0.30 2.45e-1 1.54 1.02e-0 1.37
0.1875 184897 1.42e-1 1.77 3.67e-0 0.64 1.47e-1 1.76 6.35e-1 1.65

1 0.1500 359101 9.53e-2 1.79 3.07e-0 0.80 9.84e-2 1.81 4.41e-1 1.63
0.1250 618193 6.90e-2 1.77 2.78e-0 0.55 7.16e-2 1.75 3.16e-1 1.82
0.1071 979021 5.18e-2 1.86 2.53e-0 0.60 5.38e-2 1.86 2.43e-1 1.71
0.0938 1458433 4.03e-2 1.89 2.28e-0 0.80 4.18e-2 1.89 1.91e-1 1.78
0.0833 2073277 3.22e-2 1.90 2.05e-0 0.89 3.34e-2 1.90 1.54e-1 1.84
0.0750 2840401 2.63e-2 1.92 1.86e-0 0.91 2.72e-2 1.94 1.28e-1 1.77

0.7500 7993 5.49e-1 −− 5.00e-0 −− 5.70e-1 −− 2.07e-0 −−
0.3750 61345 1.90e-1 1.53 3.58e-0 0.48 2.00e-1 1.51 7.84e-1 1.40

2 0.2500 204121 7.44e-2 2.32 2.40e-0 0.99 7.96e-2 2.27 3.14e-1 2.26
0.1875 480385 3.42e-2 2.70 1.60e-0 1.41 3.68e-2 2.68 1.53e-1 2.49
0.1500 934201 1.90e-2 2.64 1.05e-0 1.90 2.03e-2 2.67 9.17e-2 2.31
0.1250 1609633 1.17e-2 2.67 7.38e-1 1.91 1.27e-2 2.56 5.74e-2 2.56

Table 5.4: Example 2, quasi-uniform scheme for the postprocessed unknowns: σh and σ?h.
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k h N N/m e(ρ) r(ρ) e(u) r(u) e(ρ,u) r(ρ,u) eff(θ)

0.7500 757 10.514 6.58e-0 −− 6.65e-1 −− 6.62e-0 −− 0.3313
0.7500 2473 9.892 4.72e-0 0.56 4.42e-1 0.69 4.74e-0 0.56 0.3334
0.5000 8380 9.534 3.13e-0 0.67 3.10e-1 0.58 3.15e-0 0.67 0.3193
0.5000 10348 9.529 2.94e-0 0.58 2.81e-1 0.96 2.96e-0 0.59 0.3231

0 0.4146 36898 9.337 1.89e-0 0.70 1.69e-1 0.80 1.89e-0 0.70 0.3139
0.2864 93637 9.254 1.40e-0 0.63 1.36e-1 0.46 1.41e-0 0.63 0.3100
0.2795 202747 9.213 1.07e-0 0.70 9.41e-2 0.96 1.07e-0 0.71 0.3092
0.1768 485527 9.147 8.05e-1 0.65 7.69e-2 0.46 8.09e-1 0.65 0.3094
0.1768 1033678 9.123 6.23e-1 0.68 5.50e-2 0.89 6.25e-1 0.68 0.3080
0.1250 2251543 9.094 4.81e-1 0.66 4.48e-2 0.53 4.83e-1 0.66 0.3082

0.7500 3133 43.514 3.46e-0 −− 1.08e-1 −− 3.46e-0 −− 0.2256
0.7071 9586 41.498 1.97e-0 1.01 7.00e-2 0.78 1.97e-0 1.01 0.2243
0.5590 27331 40.732 9.21e-1 1.45 3.51e-2 1.32 9.22e-1 1.45 0.2008

1 0.5590 41794 40.656 6.34e-1 1.76 2.62e-2 1.38 6.34e-1 1.76 0.1891
0.5000 101143 40.232 3.65e-1 1.25 1.58e-2 1.14 3.66e-1 1.25 0.1846
0.3692 156802 40.072 2.61e-1 1.53 1.21e-2 1.24 2.61e-1 1.53 0.1806
0.3668 300970 39.858 1.81e-1 1.13 7.31e-3 1.54 1.81e-1 1.13 0.1848
0.2613 583252 39.704 1.07e-1 1.58 4.16e-3 1.70 1.07e-1 1.58 0.1843

0.7500 7993 111.014 2.01e-0 −− 3.81e-2 −− 2.01e-0 −− 0.1693
0.7071 25447 106.920 8.44e-1 1.50 1.44e-2 1.68 8.44e-1 1.50 0.1716
0.7071 53473 105.887 3.19e-1 2.62 7.52e-3 1.74 3.19e-1 2.62 0.1234

2 0.7071 78949 105.688 1.97e-1 2.48 6.06e-3 1.12 1.97e-1 2.48 0.1070
0.4566 141883 104.943 1.21e-1 1.66 2.37e-3 3.20 1.21e-1 1.66 0.1253
0.4566 256903 104.475 6.72e-2 1.98 1.75e-3 1.02 6.72e-2 1.98 0.1172
0.3604 383023 104.224 4.53e-2 1.98 1.10e-3 2.34 4.53e-2 1.98 0.1151

Table 5.5: Example 2, adaptive scheme.

k h N e0(σ) r0(σ) ediv(σ) rdiv(σ) e?0(σ) r?0(σ) e?div(σ) r?div(σ)

0.7500 757 2.17e-0 −− 7.16e-0 −− 2.12e-0 −− 6.78e-0 −−
0.7500 2473 1.61e-0 0.50 5.44e-0 0.46 1.63e-0 0.44 4.89e-0 0.55
0.5000 8380 1.05e-0 0.70 4.08e-0 0.47 1.07e-0 0.70 3.23e-0 0.68
0.5000 10348 9.63e-1 0.83 3.93e-0 0.35 9.74e-1 0.86 3.04e-0 0.60

0 0.4146 36898 6.30e-1 0.67 3.20e-0 0.32 6.35e-1 0.67 1.95e-0 0.70
0.2864 93637 4.61e-1 0.67 2.93e-0 0.19 4.66e-1 0.66 1.45e-0 0.64
0.2795 202747 3.59e-1 0.65 2.79e-0 0.13 3.62e-1 0.66 1.10e-0 0.70
0.1768 485527 2.63e-1 0.71 2.69e-0 0.08 2.66e-1 0.71 8.30e-1 0.66
0.1768 1033678 2.07e-1 0.64 2.64e-0 0.05 2.09e-1 0.64 6.42e-1 0.68
0.1250 2251543 1.58e-1 0.70 2.61e-0 0.03 1.59e-1 0.70 4.96e-1 0.67

0.7500 3133 1.02e-0 −− 6.04e-0 −− 1.04e-0 −− 3.56e-0 −−
0.7071 9586 5.53e-1 1.09 5.47e-0 0.18 5.76e-1 1.05 2.03e-0 1.01
0.5590 27331 2.88e-1 1.25 4.13e-0 0.54 2.99e-1 1.25 9.52e-1 1.44

1 0.5590 41794 1.90e-1 1.96 3.81e-0 0.38 1.99e-1 1.92 6.53e-1 1.78
0.5000 101143 1.12e-1 1.20 2.92e-0 0.60 1.17e-1 1.20 3.77e-1 1.24
0.3692 156802 7.86e-2 1.62 2.53e-0 0.66 8.19e-2 1.62 2.69e-1 1.54
0.3668 300970 5.30e-2 1.21 2.10e-0 0.57 5.52e-2 1.21 1.86e-1 1.13
0.2613 583252 2.97e-2 1.75 1.66e-0 0.72 3.11e-2 1.74 1.05e-1 1.73

0.7500 7993 5.49e-1 −− 5.00e-0 −− 5.70e-1 −− 2.07e-0 −−
0.7071 25447 2.26e-1 1.53 3.71e-0 0.52 2.41e-1 1.48 8.67e-1 1.50
0.7071 53473 1.07e-1 2.01 2.39e-0 1.18 1.15e-1 2.00 3.32e-1 2.58

2 0.7071 78949 6.15e-2 2.86 1.90e-0 1.18 6.61e-2 2.83 2.04e-1 2.51
0.4566 141883 3.30e-2 2.13 1.40e-0 1.05 3.54e-2 2.13 1.24e-1 1.69
0.4566 256903 1.98e-2 1.72 9.62e-1 1.26 1.83e-2 2.22 6.94e-2 1.96
0.3604 383023 1.39e-2 1.78 6.92e-1 1.65 1.04e-2 2.84 3.99e-2 2.77

Table 5.6: Example 2, adaptive scheme for the postprocessed unknowns: σh and σ?h.
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k h N N/m e(ρ) r(ρ) e(u) r(u) e(ρ,u) r(ρ,u) eff(θ)

0.6509 2905 10.087 1.50e+4 −− 4.48e+2 −− 1.50e+4 −− 0.5604
0.3254 21985 9.542 1.03e+4 0.55 1.68e+2 1.42 1.03e+4 0.55 0.5755
0.2170 72793 9.361 7.77e+3 0.69 8.74e+1 1.61 7.77e+3 0.69 0.5801
0.1627 170881 9.271 6.22e+3 0.77 5.36e+1 1.70 6.22e+3 0.77 0.5803
0.1302 331801 9.217 5.16e+3 0.84 3.63e+1 1.75 5.16e+3 0.84 0.5774

0 0.1085 571105 9.181 4.40e+3 0.88 2.62e+1 1.77 4.40e+3 0.88 0.5739
0.0930 904345 9.155 3.82e+3 0.91 1.99e+1 1.81 3.82e+3 0.91 0.5697
0.0814 1347073 9.135 3.38e+3 0.93 1.56e+1 1.82 3.38e+3 0.93 0.5662
0.0723 1914841 9.120 3.02e+3 0.94 1.25e+1 1.84 3.02e+3 0.94 0.5632
0.0651 2623201 9.108 2.73e+3 0.96 1.03e+1 1.86 2.73e+3 0.96 0.5601
0.0592 3487705 9.098 2.49e+3 0.99 8.61e-0 1.88 2.49e+3 0.99 0.5569
0.0542 4523905 9.090 2.29e+3 0.94 7.33e-0 1.86 2.29e+3 0.94 0.5550

0.6509 12169 42.253 8.74e+3 −− 6.18e+1 −− 8.75e+3 −− 0.4299
0.3254 93601 40.625 4.40e+3 0.99 1.37e+1 2.18 4.40e+3 0.99 0.5118
0.2170 311689 40.083 2.66e+3 1.24 5.27e-0 2.35 2.66e+3 1.24 0.5460

1 0.1627 733825 39.813 1.78e+3 1.40 2.56e-0 2.51 1.78e+3 1.40 0.5622
0.1302 1427401 39.650 1.26e+3 1.54 1.44e-0 2.58 1.26e+3 1.54 0.5678
0.1085 2459809 39.542 9.36e+2 1.64 8.81e-1 2.69 9.36e+2 1.64 0.5697
0.0930 3898441 39.464 7.27e+2 1.63 5.99e-1 2.50 7.27e+2 1.63 0.5637

0.6509 31249 108.503 5.04e+3 −− 1.87e+1 −− 5.04e+3 −− 0.3386
0.3254 242497 105.250 1.90e+3 1.40 2.94e-0 2.67 1.90e+3 1.40 0.4172

2 0.2170 810001 104.167 9.31e+2 1.76 9.18e-1 2.87 9.31e+2 1.76 0.4647
0.1627 1910017 103.625 5.76e+2 1.67 4.00e-1 2.89 5.76e+2 1.67 0.4643
0.1302 3718801 103.300 3.97e+2 1.67 2.10e-1 2.88 3.97e+2 1.67 0.4651

Table 5.7: Example 3, quasi-uniform scheme.

k h N e0(σ) r0(σ) ediv(σ) rdiv(σ) e?0(σ) r?0(σ) e?div(σ) r?div(σ)

0.6509 2905 4.48e+3 −− 1.58e+4 −− 4.37e+3 −− 1.51e+4 −−
0.3254 21985 2.63e+3 0.77 1.15e+4 0.46 2.56e+3 0.77 1.03e+4 0.55
0.2170 72793 1.84e+3 0.87 9.40e+3 0.50 1.80e+3 0.87 7.83e+3 0.69
0.1627 170881 1.42e+3 0.91 8.20e+3 0.47 1.38e+3 0.91 6.27e+3 0.77
0.1302 331801 1.15e+3 0.93 7.45e+3 0.43 1.12e+3 0.93 5.20e+3 0.84

0 0.1085 571105 9.69e+2 0.95 6.96e+3 0.37 9.47e+2 0.94 4.44e+3 0.88
0.0930 904345 8.36e+2 0.96 6.62e+3 0.32 8.17e+2 0.96 3.86e+3 0.91
0.0814 1347073 7.35e+2 0.97 6.38e+3 0.28 7.18e+2 0.97 3.41e+3 0.93
0.0723 1914841 6.55e+2 0.97 6.21e+3 0.24 6.40e+2 0.97 3.05e+3 0.94
0.0651 2623201 5.91e+2 0.98 6.08e+3 0.20 5.77e+2 0.98 2.76e+3 0.96
0.0592 3487705 5.37e+2 1.00 5.97e+3 0.18 5.24e+2 1.00 2.51e+3 0.99
0.0542 4523905 4.93e+2 0.97 5.90e+3 0.15 4.82e+2 0.97 2.31e+3 0.94

0.6509 12169 1.29e+3 −− 1.03e+4 −− 1.22e+3 −− 8.76e+3 −−
0.3254 93601 5.41e+2 1.26 6.24e+3 0.72 5.13e+2 1.25 4.41e+3 0.99
0.2170 311689 2.99e+2 1.46 4.52e+3 0.80 2.84e+2 1.45 2.67e+3 1.24

1 0.1627 733825 1.89e+2 1.60 3.53e+3 0.86 1.80e+2 1.60 1.78e+3 1.40
0.1302 1427401 1.30e+2 1.68 2.93e+3 0.83 1.23e+2 1.68 1.26e+3 1.54
0.1085 2459809 9.40e+1 1.77 2.49e+3 0.89 8.95e+1 1.77 9.37e+2 1.64
0.0930 3898441 7.24e+1 1.69 2.16e+3 0.95 6.91e+1 1.68 7.33e+2 1.59

0.6509 31249 5.54e+2 −− 6.79e+3 −− 5.12e+2 −− 5.04e+3 −−
0.3254 242497 1.66e+2 1.74 3.39e+3 1.00 1.55e+2 1.73 1.91e+3 1.40

2 0.2170 810001 7.36e+1 2.01 2.07e+3 1.21 6.85e+1 2.01 9.32e+2 1.76
0.1627 1910017 4.44e+1 1.75 1.35e+3 1.48 4.12e+1 1.76 5.67e+2 1.72
0.1302 3718801 3.06e+1 1.68 9.56e+2 1.56 2.82e+1 1.70 3.89e+2 1.69

Table 5.8: Example 3, quasi-uniform scheme for the postprocessed unknown: σh and σ?h.
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k h N N/m e(ρ) r(ρ) e(u) r(u) e(ρ,u) r(ρ,u) eff(θ)

0.6509 2905 10.087 1.50e+4 −− 4.48e+2 −− 1.50e+4 −− 0.5604
0.6509 4657 9.825 1.04e+4 1.56 3.37e+2 1.21 1.04e+4 1.56 0.4900
0.6509 6868 9.756 7.38e+3 1.76 2.85e+2 0.86 7.39e+3 1.76 0.4144
0.6509 13672 9.601 5.90e+3 0.65 1.82e+2 1.30 5.90e+3 0.65 0.4091

0 0.6009 42169 9.396 4.05e+3 0.67 9.05e+1 1.24 4.05e+3 0.67 0.3960
0.4167 81979 9.307 3.19e+3 0.71 5.77e+1 1.35 3.19e+3 0.71 0.3827
0.3560 204958 9.221 2.28e+3 0.73 3.47e+1 1.11 2.28e+3 0.73 0.3644
0.3125 412942 9.183 1.83e+3 0.62 2.10e+1 1.44 1.83e+3 0.62 0.3659
0.2763 861778 9.137 1.41e+3 0.72 1.33e+1 1.23 1.41e+3 0.72 0.3555

0.6509 12169 42.253 8.74e+3 −− 6.18e+1 −− 8.75e+3 −− 0.4299
0.6509 17875 41.667 4.14e+3 3.89 2.65e+1 4.41 4.14e+3 3.89 0.4143
0.6509 25642 41.492 2.12e+3 3.71 1.85e+1 1.98 2.12e+3 3.71 0.3112
0.6509 46606 40.954 1.38e+3 1.44 1.30e+1 1.18 1.38e+3 1.44 0.3000

1 0.6509 103993 40.417 8.08e+2 1.33 5.13e-0 2.32 8.08e+2 1.33 0.3054
0.6009 158200 40.203 5.68e+2 1.68 3.13e-0 2.35 5.68e+2 1.68 0.3094
0.4566 253738 40.047 4.04e+2 1.45 1.78e-0 2.39 4.04e+2 1.45 0.3141
0.4566 455698 39.837 2.53e+2 1.59 1.05e-0 1.80 2.53e+2 1.59 0.2925

0.6509 31249 108.503 5.04e+3 −− 1.87e+1 −− 5.04e+3 −− 0.3386
0.6509 46759 107.245 1.75e+3 5.26 4.26e-0 7.34 1.75e+3 5.26 0.3854

2 0.6509 66439 106.987 5.62e+2 6.46 2.75e-0 2.50 5.62e+2 6.46 0.2274
0.6509 100765 105.957 3.87e+2 1.80 1.47e-0 3.01 3.87e+2 1.80 0.2547
0.6509 160993 105.224 2.24e+2 2.33 9.24e-1 1.98 2.24e+2 2.33 0.2456
0.6509 270037 104.909 1.35e+2 1.95 3.91e-1 3.32 1.35e+2 1.95 0.2523

Table 5.9: Example 3, adaptive scheme.

k h N e0(σ) r0(σ) ediv(σ) rdiv(σ) e?0(σ) r?0(σ) e?div(σ) r?div(σ)

0.6509 2905 4.48e+3 −− 1.58e+4 −− 4.37e+3 −− 1.51e+4 −−
0.6509 4657 3.70e+3 0.82 1.17e+4 1.29 3.62e+3 0.80 1.05e+4 1.54
0.6509 6868 3.24e+3 0.68 9.20e+3 1.23 3.17e+3 0.67 7.53e+3 1.72
0.6509 13672 2.55e+3 0.69 8.05e+3 0.39 2.50e+3 0.69 6.03e+3 0.65

0 0.6009 42169 1.66e+3 0.76 6.80e+3 0.30 1.62e+3 0.77 4.15e+3 0.66
0.4167 81979 1.29e+3 0.76 6.33e+3 0.22 1.26e+3 0.77 3.28e+3 0.71
0.3560 204958 9.35e+2 0.70 5.92e+3 0.15 9.14e+2 0.70 2.35e+3 0.73
0.3125 412942 7.21e+2 0.74 5.75e+3 0.08 7.04e+2 0.74 1.89e+3 0.62
0.2763 861778 5.56e+2 0.71 5.63e+3 0.06 5.42e+2 0.71 1.45e+3 0.72

0.6509 12169 1.29e+3 −− 1.03e+4 −− 1.22e+3 −− 8.76e+3 −−
0.6509 17875 6.62e+2 3.48 6.31e+3 2.54 6.32e+2 3.41 4.16e+3 3.88
0.6509 25642 4.53e+2 2.10 4.68e+3 1.65 4.32e+2 2.11 2.14e+3 3.69

1 0.6509 46606 3.06e+2 1.31 3.58e+3 0.89 2.91e+2 1.32 1.39e+3 1.44
0.6509 103993 1.78e+2 1.35 2.76e+3 0.65 1.69e+2 1.35 8.15e+2 1.33
0.6009 158200 1.26e+2 1.67 2.29e+3 0.90 1.19e+2 1.68 5.73e+2 1.68
0.4566 253738 8.67e+1 1.58 1.92e+3 0.73 8.20e+1 1.58 4.07e+2 1.45
0.4566 455698 5.86e+1 1.33 1.53e+3 0.78 5.55e+1 1.33 2.56e+2 1.59

0.6509 31249 5.54e+2 −− 6.79e+3 −− 5.12e+2 −− 5.05e+3 −−
0.6509 46759 1.69e+2 5.91 3.38e+3 3.46 1.57e+2 5.87 1.75e+3 5.26

2 0.6509 66439 9.03e+1 3.55 1.81e+3 3.55 8.40e+1 3.55 5.65e+2 6.44
0.6509 100765 5.78e+1 2.15 1.37e+3 1.35 5.34e+1 2.18 3.88e+2 1.80
0.6509 160993 3.32e+1 2.36 1.00e+3 1.32 3.07e+1 2.36 2.25e+2 2.33
0.6509 270037 2.02e+1 1.92 7.33e+2 1.22 1.86e+1 1.94 1.36e+2 1.95

Table 5.10: Example 3, adaptive scheme for the postprocessed unknown: σh and σ?h.
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Figure 5.2: Example 2, adapted meshes for k = 0 with 10348, 93637, 485527, and 2251543 degrees of
freedom.
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Figure 5.3: Example 2, iso-surfaces of some components of the approximate solutions (k = 0 and
N = 2251543) for adaptive scheme.
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Figure 5.4: Example 3, e(ρ,u) vs. N (left) and e?div(σ) vs. N (right).

Figure 5.5: Example 3, adapted meshes for k = 0 with 6868, 42169, 204958, and 861778 degrees of
freedom.
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Figure 5.6: Example 3, iso-surfaces of some components of the approximate solutions (k = 2 and
N = 270037) for adaptive scheme.
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