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Abstract

In this paper we introduce and analyze an augmented mixed finite element method for the two-
dimensional nonlinear Brinkman model of porous media flow with mixed boundary conditions.
More precisely, we extend a previous approach for the respective linear model to the present non-
linear case, and employ a dual-mixed formulation in which the main unknowns are given by the
gradient of the velocity and the pseudostress. In this way, and similarly as before, the original
velocity and pressure unknowns are easily recovered through a simple postprocessing. In addition,
since the Neumann boundary condition becomes essential, we impose it in a weak sense, which
yields the introduction of the trace of the fluid velocity over the Neumann boundary as the associ-
ated Lagrange multiplier. We apply known results from nonlinear functional analysis to prove that
the corresponding continuous and discrete schemes are well-posed. In particular, a feasible choice of
finite element subspaces is given by Raviart-Thomas elements of order k ≥ 0 for the pseudostress,
piecewise polynomials of degree ≤ k for the gradient, and continuous piecewise polynomials of
degree ≤ k + 1 for the Lagrange multiplier. We also derive a reliable and efficient residual-based a
posteriori error estimator for this problem. Finally, several numerical results illustrating the per-
formance and the robustness of the method, confirming the theoretical properties of the estimator,
and showing the behaviour of the associated adaptive algorithm, are provided.

Key words: nonlinear Brinkman model, mixed finite element method, augmented formulation,
high-order approximations

1 Introduction

The Brinkman model of porous media flow, which can be seen as a mixture of Darcy’s and Stokes’
equations, is usually hard to solve, firstly because of the wide range of possible permeability ratios,
and secondly due to the nature of the mixed boundary conditions involved. One way of solving the
first issue is by means of stabilized methods (see, e.g. [3], [17]), whereas the weak imposition of
the Dirichlet boundary conditions, using Nitsche’s method, has been applied recently to deal with
the second difficulty (see, e.g. [14] and the references therein). However, most of the variational
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formulations found in the literature are based on the typical Stokes-type (also called primal-mixed)
approach in which the velocity and the pressure are kept as the main unknowns. Actually, up to the
authors’ knowledge, no stress-based or pseudostress-based approaches seemed to be available until the
recent contribution [9], where an alternative way of dealing with the mixed boundary conditions and
the a priori and a posteriori error analyses of a dual-mixed approach for the two-dimensional Brinkman
problem were provided. Indeed, the pseudostress σ is the main unknown of the resulting saddle point
problem in [9], and the velocity and pressure are easily recovered in terms of σ through simple
postprocessing formulae. In addition, as it is usual for dual-mixed methods, the Dirichlet boundary
condition for the velocity becomes natural in this case, and the Neumann boundary condition, being
essential, is imposed weakly through the introduction of the trace of the velocity on that boundary
as the associated Lagrange multiplier. In this way, the Babuška-Brezzi theory is applied first in
[9] to establish sufficient conditions for the well-posedness of the resulting continuous and discrete
formulations. In particular, a feasible choice of finite element subspaces is given by Raviart-Thomas
elements of order k ≥ 0 for the pseudostress, and continuous piecewise polynomials of degree k + 1
for the Lagrange multiplier. Next, a reliable and efficient residual-based a posteriori error estimator is
derived there. Suitable auxiliary problems, the continuous inf-sup conditions satisfied by the bilinear
forms involved, a discrete Helmholtz decomposition, and the local approximation properties of the
Raviart-Thomas and Clément interpolation operators are the main tools for proving the reliability. In
turn, Helmholtz’s decomposition, inverse inequalities, and the localization technique based on triangle-
bubble and edge-bubble functions are employed to show the efficiency.

The purpose of the present paper is to extend the analysis and results from [9] to a class of Brinkman
models whose viscosity depends nonlinearly on the gradient of the velocity, which is a characteristic
feature of quasi-Newtonian Stokes flows (see, e.g. [10, 13, 16]). To this end, we introduce the gradient
of the velocity as a new unknown and follow the approach from [13] to deal with the aforedescribed
nonlinearity. Moreover, in order to be able to apply the abstract theory from [23] dealing with nonlinear
saddle point problems (see also [7], [11]), we need to modify the resulting variational formulation by
augmenting it with a redundant equation arising from the constitutive law relating the pseudostress
and the velocity gradient. The rest of this work is organized as follows. In Section 2 we define our
nonlinear Brinkman model. Then, in Section 3 we introduce the augmented continuous formulation
and analize its solvability. The associated mixed finite element method is introduced and analyzed in
Section 4. Next, in Section 5 we basically apply the techniques from [6], [12], and [13], to derive a
reliable and efficient residual-based a posteriori error estimator for our Galerkin scheme. Finally, some
numerical results showing the good performance and robustness of the mixed finite element method,
confirming the reliability and efficiency of the estimator, and illustrating the behavior of the associated
adaptive algorithm are reported in Section 6.

We end this section with some notations to be used below. Given τ := (τij), ζ := (ζij) ∈ R2×2, we
write as usual

τ t := (τji), tr (τ ) :=
2∑
i=1

τii, τ d := τ − 1

2
tr (τ ) I, and τ : ζ :=

2∑
i,j=1

τijζij ,

where I is the identity matrix of R2×2. In addition, in what follows we utilize standard simplified
terminology for Sobolev spaces and norms. In particular, if O ⊂ R2 is a domain, S ⊂ R2 is a Lipschitz
curve, and r ∈ R, we define

Hr(O) := [Hr(O)]2, Hr(O) := [Hr(O)]2×2, and Hr(S) := [Hr(S)]2.

However, when r = 0 we usually write L2(O), L2(O), and L2(S) instead of H0(O), H0(O), and H0(S),
respectively. The corresponding norms are denoted by ‖ · ‖r,O [for Hr(O), Hr(O), and Hr(O)] and
‖ · ‖r,S [for Hr(S) and Hr(S)]. In general, given any Hilbert space H, we use H and H to denote H2
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and H2×2, respectively. In turn, the Hilbert space

H(div;O) :=
{
w ∈ L2(O) : div(w) ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [2]). The space of matrix valued functions whose rows
belong to H(div;O) will be denoted H(div;O). Hereafter, div denotes the usual divergence operator
div acting along each row of the corresponding tensor. The Hilbert norms of H(div;O) and H(div;O)
are denoted by ‖ · ‖div,O and ‖ · ‖div,O, respectively. Note that if τ ∈ H(div;O), then div(τ ) ∈ L2(O).
Finally, we employ 0 to denote a generic null vector (including the null functional and operator), and
use C and c, with or without subscripts, bars, tildes or hats, to denote generic constants independent
of the discretization parameters, which may take different values at different places.

2 The nonlinear Brinkman model

Let Ω be a bounded and simply connected domain in R2 with polygonal boundary Γ, and such that
all its interior angles lie in (0, 2π). Also, let ΓD and ΓN be disjoint open subsets of Γ, with |ΓD|,
|ΓN | 6= 0, such that Γ = Γ̄D ∪ Γ̄N . Then, given f ∈ L2(Ω) and g ∈ H−1/2(ΓN ), our boundary value
problem reads as follows: Find a tensor field σ (pseudostress), a vector field u (velocity), and a scalar
field p (pressure) in appropriate spaces such that

σ = µ(|∇u|)∇u− pI in Ω, αu− div(σ) = f in Ω,

div(u) = 0 in Ω, u = 0 on ΓD, σν = g on ΓN ,
(2.1)

where µ : R+ → R+ is the nonlinear dynamic viscosity function, α > 0 is the viscosity divided by the
permeability, | · | is the euclidean norm of R2×2, and ν is the unit outward normal to Γ. We recall

here that the Sobolev space H−1/2(ΓN ) is defined as the dual of H
1/2
00 (ΓN ), where

H
1/2
00 (ΓN ) :=

{
v|ΓN

: v ∈ H1(Ω), v = 0 on ΓD
}
.

The corresponding duality pairing with respect to the L2(ΓN ) - inner product is denoted by 〈·, ·〉ΓN
. In

addition, throughout the paper ‖ ·‖0;1/2,ΓN
stands for the usual norm of both H

1/2
00 (ΓN ) and H

1/2
00 (ΓN )

(see [9]) .

On the other hand, in what follows we let ψij : R2×2 → R be the mapping given by ψij(r) :=
µ(|r|)rij for all r := (rij) ∈ R2×2, for all i, j ∈ {1, 2}. Then, throughout this paper we assume that µ
is of class C1 and that there exist γ0, α0 > 0 such that for all r := (rij), s := (sij) ∈ R2×2, there holds

|ψij(r)| ≤ γ0‖r‖R2×2 ,

∣∣∣∣ ∂

∂rkl
ψij(r)

∣∣∣∣ ≤ γ0, ∀ i, j, k, l ∈ {1, 2}, (2.2)

and

2∑
i,j,k,l=1

∂

∂rkl
ψij(r)sijskl ≥ α0‖s‖2R2×2 . (2.3)

For example, the Carreau law for viscoplastic flows (see, e.g. [18, 22]), given by

µ(t) := µ0 + µ1(1 + t2)(β−2)/2 ∀ t ∈ R+ ,

satisfies (2.2) and (2.3) for all µ0, µ1 > 0, and for all β ∈ [1, 2]. In particular, note that with β = 2 we
recover the usual linear Brinkman model.
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Now, we observe that the pair of equations given by

σ = µ(|∇u|)∇u− pI in Ω, and div(u) = 0 in Ω,

is equivalent to

σ = µ(|∇u|)∇u− pI in Ω, and p = −1

2
tr (σ) in Ω, (2.4)

whence introducing the gradient t := ∇u in Ω, as an auxiliary unknown, we can rewrite (2.1) as
follows

t = ∇u in Ω, σd = ψ(t) in Ω, αu− div(σ) = f in Ω,

tr (t) = 0 in Ω, u = 0 on ΓD, σν = g on ΓN ,
(2.5)

where ψ : R2×2 → R2×2 is given by ψ(r) := (ψij(r)) = (µ(|r|)rij) for all r := (rij) ∈ R2×2.

3 The continuous formulation

3.1 The augmented approach

Initially we test the first and second equations of (2.5) with τ ∈ H(div; Ω) and s ∈ L2
tr(Ω), respectively,

where
L2

tr(Ω) :=
{
s ∈ L2(Ω) : tr (s) = 0

}
.

Then, integrating by parts the expression
∫

Ω∇u : τ , using the Dirichlet boundary condition, recalling

that tr (t) = 0, and introducing the auxiliary unknown ξ := −u|ΓN
∈ H

1/2
00 (ΓN ), we arrive at∫

Ω
ψ(t) : s−

∫
Ω

s : σd = 0 ∀ s ∈ L2
tr(Ω),∫

Ω
t : τ d +

∫
Ω

u · div(τ ) + 〈τν, ξ〉ΓN
= 0 ∀ τ ∈ H(div; Ω). (3.6)

In turn, the Neumann boundary condition is imposed weakly as

〈σν,λ〉ΓN
= 〈g,λ〉ΓN

∀ λ ∈ H
1/2
00 (ΓN ) ,

and replacing u in (3.6) by

u =
1

α

{
f + div(σ)

}
in Ω, (3.7)

we obtain that∫
Ω

t : τ d +
1

α

∫
Ω

div(σ) · div(τ ) + 〈τν, ξ〉ΓN
= − 1

α

∫
Ω

f · div(τ ) ∀ τ ∈ H(div; Ω).

Finally, for sake of feasibility of the forthcoming analysis, namely to be able to apply the abstract
theory from [23], we enrich the foregoing equations with the introduction of the constitutive law
relating σ and t (written as in the second equation of (2.5)) multiplied by a stabilization parameter.
More precisely, given κ > 0, to be chosen later, we add

κ

∫
Ω

(
σd −ψ(t)

)
: τ d = 0 ∀ τ ∈ H(div; Ω), (3.8)
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and then, we obtain the variational formulation: Find ((t,σ), ξ) ∈ H ×Q such that

[A(t,σ), (s, τ )] + [B(s, τ ), ξ] = [F , (s, τ )] ∀ (s, τ ) ∈ H,

[B(t,σ),λ] = [G,λ] ∀ λ ∈ Q,
(3.9)

where H := L2
tr(Ω) × H(div; Ω), Q := H

1/2
00 (ΓN ), and the nonlinear operator A : H → H ′, the linear

operator B : H → Q′, and the functionals F ∈ H ′ and G ∈ Q′, are defined by

[A(t,σ), (s, τ )] :=

∫
Ω
ψ(t) : s −

∫
Ω

s : σd +

∫
Ω

t : τ d

+κ

∫
Ω

(
σd − ψ(t)

)
: τ d +

1

α

∫
Ω

div(σ) · div(τ ) ,

(3.10)

[B(s, τ ),λ] := 〈τν,λ〉ΓN
, (3.11)

[F , (s, τ )] := − 1

α

∫
Ω

f · div(τ ) ,

[G,λ] := 〈g,λ〉ΓN
, (3.12)

where [·, ·] stands in each case for the duality pairing induced by the corresponding operators and
functionals.

3.2 Analysis of the augmented formulation

The purpose of this section is to establish the well-posedness of (3.9). We begin the analysis by
recalling from [23] the following abstract theorem.

Theorem 3.1. Let X and M be Hilbert spaces, and let A : X → X ′ and B : X → M ′ be nonlinear
and linear operators, respectively. Let V := Ker(B) = {x ∈ X : [B(x), q] = 0 ∀q ∈ M}. Assume that
A is Lipschitz-continuous on X and that for all z̃ ∈ X, A(z̃ + · ) is uniformly strongly monotone on
V , that is, there exist constants c1, c2 > 0 such that

‖A(x)−A(y)‖X′ ≤ c1‖x− y‖X ∀ x, y ∈ X,

and
[A(z̃ + x)−A(z̃ + y)] ≥ c2‖x− y‖2X ,

for all z̃ ∈ X and for all x, y ∈ V . In addition, assume that there exists β > 0 such that for all q ∈M

sup
x∈X
x 6=0

[B(x), q]

‖x‖X
≥ β‖q‖M .

Then, given (F ,G) ∈ X ′ ×M ′, there exists a unique (x, p) ∈ X ×M such that

[A(x), y] + [B(y), p] = [F , y] ∀ y ∈ X,
[B(x), q] = [G, q] ∀ q ∈M.

Further, the following estimates hold

‖x‖X ≤ 1

c2
‖F‖+

1

β

(
1 +

c1

c2

)
‖G‖, (3.13)

‖p‖M ≤ 1

β

(
1 +

c1

c2

)(
‖F‖+

c1

β
‖G‖

)
. (3.14)
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Proof. See [23, Proposition 2.3] or [13, Theorem 3.1].

In what follows we apply Theorem 3.1 to the augmented formulation (3.9). The inf-sup condition
for the linear operator B is proved first.

Lemma 3.1. There exists a positive constant β, depending only on Ω, such that

sup
(s,τ)∈H
(s,τ)6=0

[B(s, τ ),λ]

‖(s, τ )‖H
≥ β‖λ‖0;1/2,ΓN

∀ λ ∈ Q.

Proof. Note that B : H → Q′ is given by B(s, τ ) := τν|ΓN
∈ H−1/2(ΓN ) = Q′ ∀ (s, τ ) ∈ H, and

hence the fact that the normal trace operator γν : H(div; Ω) → H−1/2(ΓN ) is surjective implies the
same property for B.

Next, in order to verify the assumptions required by Theorem 3.1 for our nonlinear operator A, we
define the auxiliary nonlinear operator A : L2

tr(Ω)→ [L2
tr(Ω)]′ given by

[A(r), s] :=

∫
Ω
ψ(r) : s ∀ r, s ∈ L2

tr(Ω) . (3.15)

It is easy to show from (2.2) and (2.3) (see e.g. [13, Lemma 2.1]) that A is Lipschitz-continuous and
strongly monotone.

Lemma 3.2. Let γ0 and α0 be the constants of (2.2) and (2.3), respectively. Then, for each r, s ∈
L2

tr(Ω) there hold

‖A(r)− A(s)‖[L2(Ω)]′ ≤ γ0‖r− s‖0,Ω, (3.16)

and

[A(r)− A(s), r− s] ≥ α0‖r− s‖20,Ω. (3.17)

Proof. It suffices to observe that for each r̃ ∈ L2
tr(Ω) the Gâteuax derivative DA(r̃) is a bilinear form

on L2
tr(Ω)×L2

tr(Ω), which is uniformly bounded and uniformly L2
tr(Ω)-elliptic (see [13, Lemma 2.1] for

details).

We are now ready to establish that the nonlinear operator A (cf. (3.10)) is also Lipschitz-continuous
on H.

Lemma 3.3. Let A be the nonlinear operator defined in (3.10). Then, there exists a constant CLC > 0
such that

‖A(t,σ)−A(s, τ )‖H′ ≤ CLC‖(t,σ)− (s, τ )‖H ∀ (t,σ), (s, τ ) ∈ H.

Proof. Given (t,σ), (s, τ ) and (r,ρ) ∈ H, we obtain, according to the definition of A and A, that

[A(t,σ)−A(s, τ ), (r,ρ)] = [A(t)− A(s), r] − κ[A(t)− A(s),ρd] −
∫

Ω
r : (σ − τ )d

+

∫
Ω

(t− s) : ρd + κ

∫
Ω

(σ − τ )d : ρd +
1

α

∫
Ω

div(σ − τ ) · div(ρ) .

(3.18)

Hence, it follows easily from (3.18), (3.16), and the Cauchy-Schwarz inequality, that A is Lipschitz-
continuous on H with the constant CLC := 3 max{1, γ0, κ, κγ0, α

−1}.

6



Our next goal is to show that for all (r,ρ) ∈ H, A((r,ρ) + · ) is uniformly strongly monotone on
the kernel of B, given by V := {(s, τ ) ∈ H : τν = 0 on ΓN}. To this end, we first consider the
decomposition

H(div; Ω) = H0(div; Ω)⊕RI,

where H0(div; Ω) := {τ ∈ H(div; Ω) :
∫

Ω tr (τ ) = 0}. This means that for any τ ∈ H(div; Ω)
there exist unique τ 0 ∈ H0(div; Ω) and d := 1

2|Ω|
∫

Ω tr (τ ) ∈ R such that τ = τ 0 + dI, whence

‖τ‖2div,Ω = ‖τ 0‖2div,Ω + 2d2|Ω|. In addition, we have the following lemmas.

Lemma 3.4. There exists C1 > 0, depending only on Ω, such that

C1‖τ 0‖20,Ω ≤ ‖τ d‖20,Ω + ‖div(τ )‖20,Ω ∀ τ ∈ H(div; Ω).

Proof. See [1, Lemma 3.1] or [2, Proposition 3.1, Chapter IV].

Lemma 3.5. There exists C2 > 0, depending only on ΓN and Ω, such that

C2‖τ‖2div,Ω ≤ ‖τ 0‖2div,Ω ∀ τ ∈ H(div; Ω) such that τν = 0 on ΓN .

Proof. See [8, Lemma 2.2].

The uniform strong monotonicity of A((r,ρ) + · ) on V , for all (r,ρ) ∈ H, is proved as follows.

Lemma 3.6. Let A and B be the operators defined in (3.10) and (3.11), respectively, and let V be the

kernel of B. Assume that the parameter κ lies in
(

0, 2α0δ
γ0

)
for each δ ∈

(
0, 2

γ0

)
, where α0 and γ0 are

the positive constants from (2.2) and (2.3). Then, there exists a constant CSM > 0 such that for all
(r,ρ) ∈ H, and for all (t,σ), (s, τ ) ∈ V there holds

[A((r,ρ) + (t,σ))−A((r,ρ) + (s, τ )), (t,σ)− (s, τ )] ≥ CSM‖(t,σ)− (s, τ )‖2H .

Proof. Given (r,ρ) ∈ H and (t,σ), (s, τ ) ∈ V , we obtain from (3.18) that

[A((r,ρ) + (t,σ))−A((r,ρ) + (s, τ )), (t,σ)− (s, τ )]

= [A(r + t)− A(r + s), t− s]− κ[A(r + t)− A(r + s), (σ − τ )d]

+ κ‖(σ − τ )d‖20,Ω +
1

α
‖div(σ − τ )‖20,Ω.

Then, using that [A(r + t) − A(r + s), t − s] = [A(r + t) − A(r + s), (r + t) − (r + s)], and applying
the strong monotonicity and Lipschitz-continuity of A (cf. Lemma 3.2), we deduce from the foregoing
equation that

[A((r,ρ) + (t,σ))−A((r,ρ) + (s, τ )), (t,σ)− (s, τ )]

≥ α0‖t− s‖20,Ω − κγ0‖t− s‖0,Ω‖(σ − τ )d‖0,Ω + κ‖(σ − τ )d‖20,Ω +
1

α
‖div(σ − τ )‖20,Ω

≥ α0‖t− s‖20,Ω − κγ0

{
‖t− s‖20,Ω

2δ
+
δ‖(σ − τ )d‖20,Ω

2

}
+ κ‖(σ − τ )d‖20,Ω +

1

α
‖div(σ − τ )‖20,Ω

=
(
α0 −

κγ0

2δ

)
‖t− s‖20,Ω + κ

(
1− γ0δ

2

)
‖(σ − τ )d‖20,Ω +

1

α
‖div(σ − τ )‖20,Ω ,

for all δ > 0. It follows that the constants multiplying the norms above become positive if δ ∈
(

0, 2
γ0

)
and κ ∈

(
0, 2α0δ

γ0

)
. Then, applying Lemmas 3.4 and 3.5, we deduce that
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[A((r,ρ) + (t,σ))−A((r,ρ) + (s, τ )), (t,σ)− (s, τ )]

≥
(
α0 −

κγ0

2δ

)
‖t− s‖20,Ω + β1‖(σ − τ )0‖20,Ω +

1

2α
‖div((σ − τ )0)‖20,Ω

≥
(
α0 −

κγ0

2δ

)
‖t− s‖20,Ω + β2‖(σ − τ )0‖2div,Ω

≥
(
α0 −

κγ0

2δ

)
‖t− s‖20,Ω + C2β2‖(σ − τ )‖2div,Ω,

where β1 := C1 min
{

1− γ0δ
2 , 1

2α

}
> 0 and β2 := min

{
β1,

1
2α

}
> 0. Finally, the proof is completed by

choosing CSM := min
{
α0 − κγ0

2δ , C2β2

}
.

We remark here that the optimal choice of the stabilization parameter κ, that is the one yielding
the largest value of the strong monotonicity constant CSM, arises by taking δ = 1

γ0
and κ = α0

γ2
0

.

The well-posedness of our variational formulation (3.9) is provided by the following theorem.

Theorem 3.2. Assume that f ∈ L2(Ω), g ∈ H−1/2(ΓN ), and that the parameter κ lies in
(

0, 2α0δ
γ0

)
for each δ ∈

(
0, 2

γ0

)
, where α0 and γ0 are the positive constants from (2.2) and (2.3). Then, there

exists a unique ((t,σ), ξ) ∈ H × Q solution of (3.9). In addition, there exists a positive constant C,
depending on ΓN , Ω, β, α0, γ0, κ, and α, such that

‖t‖0,Ω + ‖σ‖div,Ω + ‖ξ‖0;1/2,ΓN
≤ C

{
‖f‖0,Ω + ‖g‖−1/2,ΓN

}
. (3.19)

Proof. Thanks to Lemmas 3.1, 3.3, and 3.6, the proof is a direct application of Theorem 3.1.

4 The mixed finite element method

In this section we adapt the approach from [9] and define explicit finite element subspaces Hh of

L2
tr(Ω) × H(div; Ω) and Qh of H

1/2
00 (ΓN ) such that the mixed finite element scheme associated with

the continuous formulation (3.9) is well-posed. For this purpose, let {Th}h>0 be a shape-regular
family of triangulations of the polygonal region Ω̄ by triangles T of diameter hT , with mesh size
h := max{hT : T ∈ Th}, and such that all the points in Γ̄D ∩ Γ̄N become vertices of Th for all h > 0.
Also, given an integer k ≥ 0 and a subset S of R2, we denote by Pk(S) the space of polynomials
defined in S of total degree at most k. Then, for each integer k ≥ 0 and for each T ∈ Th, we define
the local Raviart-Thomas space of order k (see, e.g. [2], [21])

RTk(T ) := Pk(T ) ⊕ Pk(T )x,

where x = ( x1
x2 ) is a generic vector of R2, and Pk(T ) := [Pk(T )]2. Now, let RTk(Th) be the corres-

ponding global Raviart-Thomas tensor space of order k, that is,

RTk(Th) :=
{
τ ∈ H(div; Ω) : (τi1, τi2)t|T ∈ RTk(T ) ∀ i ∈ {1, 2}, ∀ T ∈ Th

}
.

We also let Xh be the global tensor space of piecewise polynomials of degree ≤ k with zero trace, that
is

Xh :=
{
s ∈ L2

tr(Ω) : s|T ∈ Pk(T ) ∀ T ∈ Th
}
,

so that the corresponding finite element subspace Hh for (t,σ) ∈ L2
tr(Ω)×H(div; Ω) is given by

Hh := Xh × RTk(Th). (4.1)
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In turn, an eventual finite element subspace for the fluid velocity u would be given by the global vector
space of piecewise polynomials of degree ≤ k, that is

Qu
h :=

{
v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀ T ∈ Th

}
. (4.2)

Next, let Σh be the partition on ΓN induced by the triangulation Th, and define the mesh size hΣ :=
max{|e| : e ∈ Σh}. Then, proceeding exactly as in [9], we consider in what follows two possible choices

for Qh, the finite element subspace approximating the unknown ξ ∈ H
1/2
00 (ΓN ).

A first choice for Qh: Let Σh̃ be another partition of ΓN , completely independent from Σh, with

h̃ := max{|e| : e ∈ Σh̃}. Then, given an integer k ≥ 0, we define

Qh :=
{
λh̃ ∈ H

1/2
00 (ΓN ) : λh̃|e ∈ Pk+1(e) ∀ e ∈ Σh̃

}
. (4.3)

A second choice for Qh: Let us assume that the number of edges of Σh is an even number. Then,
we let Σ2h be the partition of ΓN arising by joining pairs of adjacent elements, and define for k = 0

Qh :=
{
λh ∈ H

1/2
00 (ΓN ) : λh|e ∈ P1(e) ∀ e ∈ Σ2h

}
. (4.4)

As already stated in [9], the advantages and disadvantages of one choice or the other will become
clear below from Lemma 4.1. More precisely, under quasi-uniformity assumptions on Σh and Σh̃, (4.3)
allows any polynomial degree k ≥ 0, whereas (4.4) is restricted to k = 0, but without requiring any
condition on these meshes.

Then, the mixed finite element scheme associated with (3.9) reads: Find ((th,σh), ξh) ∈ Hh ×Qh
such that

[A(th,σh), (sh, τ h)] + [B(sh, τ h), ξh] = [F , (sh, τ h)] ∀ (sh, τ h) ∈ Hh,

[B(th,σh),λh] = [G,λh] ∀ λh ∈ Qh.
(4.5)

We remark that the second identity in (2.4) suggests that the pressure p can be approximated later
on by the postprocessing formula

ph := −1

2
tr (σh) . (4.6)

In what follows we apply again Theorem 3.1 to show that (4.5) is well-posed. We begin by recalling
from [9] the discrete inf-sup condition for B, which establishes the existence of β > 0, independent of
h, such that

sup
(sh,τh)∈Hh
(sh,τh)6=0

[B(sh, τ h),λh]

‖(sh, τ h)‖H
≥ β‖λh‖0;1/2,ΓN

∀ λh ∈ Qh. (4.7)

More precisely, we have the following result (cf. [9]).

Lemma 4.1. Let Qh be given by (4.3) and assume that both Σh and Σh̃ are quasi-uniform. Then

there exist constants C0 ∈ (0, 1] and β > 0, independent of h and h̃, such that whenever hΣ ≤ C0h̃,
there holds (4.7). Furthermore, let Hh and Qh be given by (4.1) (with k = 0) and (4.4), respectively.
Then there exists β > 0, independent of h, such that (4.7) holds.

Proof. We first recall that the quasi-uniformity of Σh and, analogously, of Σh̃, means that there
exists c > 0, independent of h, such that max

e∈Σh

|e| ≤ c min
e∈Σh

|e|. We omit further details and refer to [9,

Lemmas 5 and 6] for the proof of these results.
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On the other hand, the Lipschitz-continuity of A on Hh ⊆ H, follows similarly to the proof of
Lemma 3.3. Hence, it remains to prove that for each (rh,ρh) ∈ Hh, A((rh,ρh) + · ) is uniformly
strongly monotone on Vh, where Vh is the discrete kernel of the operator B, that is

Vh := Xh × Ṽh,

with
Ṽh :=

{
τ h ∈ RTk(Th) : 〈τ hν,λh〉ΓN

= 0 ∀ λh ∈ Qh
}
.

The following lemma provides the discrete analogue of Lemma 3.5.

Lemma 4.2. There exists C > 0, independent of h, such that

C‖τ h‖2div,Ω ≤ ‖τ 0h‖2div,Ω, ∀ τ h := τ 0h + dhI ∈ Ṽh,

where τ 0h ∈ RTk(Th) ∩H0(div; Ω) and dh ∈ R.

Proof. See [9, Lemma 7].

Now, we are in a position to show the required discrete property of A on Vh, for all (rh,ρh) ∈ Hh.

Lemma 4.3. Assume that the parameter κ lies in
(

0, 2α0δ
γ0

)
for each δ ∈

(
0, 2

γ0

)
, where α0 and γ0

are the positive constants from (2.2) and (2.3). Then, there exists a constant C > 0, independent of
h, such that

[A((rh,ρh) + (th,σh))−A((rh,ρh) + (sh, τ h)), (th,σh)− (sh, τ h)] ≥ C‖(th,σh)− (sh, τ h)‖2H ,

for all (rh,ρh) ∈ Hh, and for all (th,σh), (sh, τ h) ∈ Vh.

Proof. It follows straightforwardly from the proof of Lemma 3.6, using now Lemma 4.2 instead of
Lemma 3.5.

The following theorem establishes the well posedness of (4.5) and the associated Céa estimate.

Theorem 4.1. Let Qh be any of the two choices described above with the conditions assumed in

Lemma 4.1. Also, suppose that the parameter κ lies in
(

0, 2α0δ
γ0

)
for each δ ∈

(
0, 2

γ0

)
, where α0

and γ0 are the positive constants from (2.2) and (2.3). Then the Galerkin scheme (4.5) has a unique
solution ((th,σh), ξh) ∈ Hh×Qh and there exist positive constants C1, C2 > 0, independent of h, such
that

‖((th,σh), ξh)‖H×Q ≤ C1

{
‖f‖0,Ω + ‖g‖−1/2,ΓN

}
, (4.8)

and

‖((t,σ), ξ)− ((th,σh), ξh)‖H×Q

≤ C2

{
inf

(sh,τh)∈Hh

‖(t,σ)− (sh, τ h)‖H + inf
λh∈Qh

‖ξ − λh‖0;1/2,ΓN

}
. (4.9)

Proof. Thanks to the previous results given by Lemmas 4.1, 3.3 and 4.3, the proof is again a direct
application of Theorem 3.1. In turn, the Céa estimate (4.9) follows from a particular application of
the general result given by [23, Theorem 2.1].
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Next, in order to provide the rate of convergence of the Galerkin scheme (4.5), we need the approx-
imation properties of the finite element subspaces involved. For this purpose, we now introduce the
Raviart-Thomas interpolation operator (see [2, 21]) Πk

h : H1(Ω)→ RTk(Th), which, given τ ∈ H1(Ω),
is characterized by the following identities:∫

e
Πk
h(τ )ν · p =

∫
e
τν · p, ∀ edge e ∈ Th, ∀ p ∈ Pk(e), when k ≥ 0, (4.10)

and ∫
T

Πk
h(τ ) : ρ =

∫
T
τ : ρ, ∀ T ∈ Th, ∀ ρ ∈ Pk−1(T ), when k ≥ 1. (4.11)

Recall, according to the notations introduced in Section 1, that Pk(e) := [Pk(e)]
2 and Pk−1(T ) :=

[Pk−1(T )]2×2. Then, it is easy to show, using (4.10) and (4.11), that (cf. [20, Section 3.4.2, eq.
(3.4.23)])

div(Πk
h(τ )) = Pkh(div(τ )), (4.12)

where Pkh : L2(Ω)→ Qu
h is the L2(Ω)-orthogonal projector. Since Qu

h is the subspace of L2(Ω) formed
by piecewise polynomial vectors of degree ≤ k [cf. (4.2)], it is easy to see that Pkh(v)|T = Pkh,T (v|T )

for each T ∈ Th, for each v ∈ L2(Ω), where Pkh,T : L2(T ) → Pk(T ) is the local orthogonal projector.
Hence, for each v ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, there holds (see, e.g. [4])

‖v− Pkh(v)‖0,T = ‖v− Pkh,T (v)‖0,T ≤ ChmT |v|m,T ∀ T ∈ Th. (4.13)

In addition, the operator Πk
h satisfies the following approximation properties (see, e.g. [2, 21]): for

each τ ∈ Hm(Ω), with 1 ≤ m ≤ k + 1, there holds

‖τ −Πk
h(τ )‖0,T ≤ ChmT |τ |m,T ∀ T ∈ Th, (4.14)

for each τ ∈ H1(Ω) such that div(τ ) ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, there holds

‖div(τ −Πk
h(τ ))‖0,T ≤ ChmT |div(τ )|m,T ∀ T ∈ Th, (4.15)

and for each τ ∈ H1(Ω), there holds

‖τν −Πk
h(τ )ν‖0,e ≤ Ch1/2

e ‖τ‖1,Te ∀ edge e ∈ Th, (4.16)

where Te ∈ Th contains e on its boundary. In particular, note that (4.15) follows easily from (4.12)
and (4.13). Moreover, the interpolation operator Πk

h can also be defined as a bounded linear operator
from the larger space Hs(Ω) ∩H(div; Ω) into RTk(Th) for all s ∈ (0, 1] (see, e.g. [15, Theorem 3.16]),
and in this case there holds the following interpolation error estimate

‖τ −Πk
h(τ )‖0,T ≤ ChsT

{
‖τ‖s,T + ‖div(τ )‖0,T

}
∀ T ∈ Th. (4.17)

Then, as a consequence of (4.13)–(4.17) and the usual estimates for the interpolation in Sobolev
spaces (cf. [19, Appendix B]), we find that Xh, RTk(Th) and Qh satisfy the following approximation
properties:

(APt
h) For each s ∈ [0, k + 1] and for each s ∈ Hs(Ω) there exists sh ∈ Xh such that

‖s− sh‖0,Ω ≤ Chs‖s‖s,Ω.
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(APσh ) For each s ∈ (0, k+1] and for each τ ∈ Hs(Ω) with div(τ ) ∈ Hs(Ω) there exists τ h ∈ RTk(Th)
such that

‖τ − τ h‖div,Ω ≤ Chs
{
‖τ‖s,Ω + ‖div(τ )‖s,Ω

}
.

(APξh) For each s ∈ [0, k + 1] and for each λ ∈ H
s+1/2
00 (ΓN ), there exists λh ∈ Qh such that

‖λ− λh‖0;1/2,ΓN
≤ Chs‖λ‖s+1/2,ΓN

.

The following theorem provides the theoretical rate of convergence of the Galerkin scheme (4.5),
under suitable regularity assumptions on the exact solution.

Theorem 4.2. Let ((t,σ), ξ) ∈ H × Q and ((th,σh), ξh) ∈ Hh × Qh be the unique solutions of the
continuous and discrete formulations (3.9) and (4.5), respectively. Assume that t ∈ Hs(Ω), σ ∈ Hs(Ω),

div(σ) ∈ Hs(Ω) and ξ ∈ H
s+1/2
00 (ΓN ), for some s ∈ (0, k + 1]. Then, there exists C > 0, independent

of h, such that

‖((t,σ), ξ)− ((th,σh), ξh)‖H×Q ≤ Chs
{
‖t‖s,Ω + ‖σ‖s,Ω + ‖div(σ)‖s,Ω + ‖ξ‖s+1/2,ΓN

}
.

Proof. It follows from the Céa estimate (4.9) (cf. Theorem 4.1) and the approximation properties

(APt
h), (APσh ) and (APξh).

5 A residual-based a posteriori error estimator

In this section we develop a residual-based a-posteriori error analysis for the mixed finite element
scheme (4.5).

5.1 Preliminaries

First we introduce several notations. Given T ∈ Th, we let E(T ) be the set of its edges, and let Eh
be the set of all edges of the triangulation Th. Then we write Eh = Eh(Ω) ∪ Eh(ΓD) ∪ Eh(ΓN ), where
Eh(Ω) := {e ∈ Eh : e ⊆ Ω}, Eh(ΓD) := {e ∈ Eh : e ⊆ ΓD} and Eh(ΓN ) := {e ∈ Eh : e ⊆ ΓN}.
Also, for each edge e ∈ Eh we fix a unit normal vector νe := (ν1, ν2)t, and let Se := (−ν2, ν1)t be the
corresponding fixed unit tangential vector along e. Then, given e ∈ Eh(Ω) and τ ∈ L2(Ω) such that
τ |T ∈ C(T ) := [C(T )]2×2 on each T ∈ Th, we let [[τSe ]] be the corresponding jump across e, that
is, [[τSe ]] := (τ |T − τ |T ′)|eSe, where T and T ′ are the triangles of Th having e as a common edge.
Abusing notation, when e ∈ Eh(Γ), we also write [[τSe ]] := τ |eSe. From now on, when no confusion
arises, we simple write S and ν instead of Se and νe, respectively. Finally, given scalar, vector and
tensor valued fields v, ϕ := (ϕ1, ϕ2) and τ := (τij), respectively, we let

curl(v) :=

(
∂v
∂x2

− ∂v
∂x1

)
, curl(ϕ) :=

(
curl(ϕ1)t

curl(ϕ2)t

)
, and curl(τ ) :=

(
∂τ12
∂x1
− ∂τ11

∂x2

∂τ22
∂x1
− ∂τ21

∂x2

)
.

Then, letting ((t,σ), ξ) ∈ H×Q and ((th,σh), ξh) ∈ Hh×Qh be the unique solutions of the continuous
and discrete formulations (3.9) and (4.5), respectively, we define for each T ∈ Th a local error indicator
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θT as follows:

θ2
T :=

1

α2
‖f− Pkh(f)‖20,T + h2

T ‖th −∇uh‖20,T + h2
T ‖curl(th)‖20,T

+
∑

e∈E(T )∩Eh(Ω)

he‖[[thS ]]‖20,e +
∑

e∈E(T )∩Eh(ΓD)

he‖[[thS ]]‖20,e

+
∑

e∈E(T )∩Eh(ΓN )

he

{∥∥∥∥thS +
dξh
dS

∥∥∥∥2

0,e

+ ‖ξh + uh‖20,e + ‖g− σhν‖20,e

}

+ ‖σd
h −ψ(th)‖20,T + h2

T ‖curl
(
σd
h −ψ(th)

)
‖20,T

+
∑

e∈E(T )

he‖[[(σd
h −ψ(th))S ]]‖20,e, (5.1)

where, resembling (3.7), we set

uh :=
1

α

{
Pkh(f) + div(σh)

}
in Ω. (5.2)

Note that the term ‖g − σhν‖20,e, defining θ2
T , requires that g|e ∈ L2(e) ∀ e ∈ Eh(ΓN ). The residual

character of each term on the right hand side of (5.1) is quite clear. As usual the expression

θ :=

∑
T∈Th

θ2
T


1/2

(5.3)

is employed as the global residual error estimator.

The following theorem constitutes the main result of this section.

Theorem 5.1. Let ((t,σ), ξ) ∈ H×Q and ((th,σh), ξh) ∈ Hh×Qh be the unique solutions of (3.9) and
(4.5), respectively. In addition, let u ∈ L2(Ω) be defined according to (3.7), that is u := 1

α{f+div(σ)},
and assume that the Neumann datum g belongs to L2(ΓN ). Then, there exists positive constants Ceff

and Crel, independent of h, such that

Ceffθ + h.o.t. ≤ ‖u− uh‖0,Ω + ‖((t− th,σ − σh), ξ − ξh)‖H×Q ≤ Crelθ, (5.4)

where h.o.t. stands for one or several terms of higher order.

The proof of Theorem 5.1, which follows closely the approaches in [6] and [9], is separated into the
two parts given by the next subsections. The efficiency of the global error estimator (lower bound in
(5.4)) is proved below in Section 5.3, whereas the corresponding reliability (upper bound in (5.4)) is
derived next. The meaning of h.o.t. is explained below right after Lemma 5.12.

5.2 Reliability

We begin by recalling from the proof of Lemma 3.2 that DA(r̃) is a uniformly bounded and uniformly
elliptic bilinear form on L2

tr(Ω) × L2
tr(Ω) for all r̃ ∈ L2

tr(Ω). Moreover, we observe from (3.10) and
(3.15), that the nonlinear operator A can be rewritten as:

[A(t,σ), (s, τ )] := [A(t), s−κτ d]−
∫

Ω
s : σd +

∫
Ω

t : τ d + κ

∫
Ω
σd : τ d +

1

α

∫
Ω

div(σ) ·div(τ ) . (5.5)

13



Hence, as a consequence of the continuous dependence result provided by the linear version of Theorem
3.1 (cf. (3.13) and (3.14) with A linear), which is actually the usual estimate provided by the Babuška-
Brezzi theory (see, e.g. [2, Theorem 1.1 in Chapter II]), we can conclude that the linear operator M
obtained by adding the two equations of the left hand side of (3.9), after replacing A within A (see
(5.5)) by the Gâteaux derivative DA(r̃) at any r̃ ∈ L2

tr(Ω), satisfies a global inf-sup condition. More
precisely, there exists a constant C > 0 such that

C‖((r,ρ), ζ)‖H×Q ≤ sup
((s,τ),λ)∈H×Q

((s,τ),λ)6=0

[M((s, τ ),λ), ((r,ρ), ζ)]

‖((s, τ ),λ)‖H×Q
, (5.6)

for all r̃ ∈ L2
tr(Ω) and for all ((r,ρ), ζ) ∈ H ×Q, where

[M((s, τ ),λ), ((r,ρ), ζ)] := DA(r̃)(r, s− κτ d)−
∫

Ω
s : ρd +

∫
Ω

r : τ d

+ κ

∫
Ω
ρd : τ d +

1

α

∫
Ω

div(ρ) · div(τ ) + [B(s, τ ), ζ] + [B(r,ρ),λ] .

We now have the following preliminary estimate.

Lemma 5.1. Let ((t,σ), ξ) ∈ H × Q and ((th,σh), ξh) ∈ Hh × Qh be the unique solutions of (3.9)
and (4.5), respectively. Then there exists C > 0, independent of h, such that

C ‖((t− th,σ − σh), ξ − ξh)‖H×Q

≤ ‖σd
h −ψ(th)‖0,Ω + ‖g− σhν‖−1/2,ΓN

+ sup
τ∈H(div;Ω)

τ 6=0

(
E1 + E2

)
(τ )

‖τ‖div,Ω
,

(5.7)

where the functionals E1 and E2, defined as

E1(τ ) := 〈τν, ξh〉ΓN
+

∫
Ω

th : τ +
1

α

∫
Ω

(f + div(σh)) · div(τ ) , (5.8)

and

E2(τ ) := κ

∫
Ω

(σd
h −ψ(th)) : τ , (5.9)

satisfy (
E1 + E2

)
(τ h) = 0 ∀ τ h ∈ RTk(Th) . (5.10)

Proof. Since t and th belong to L2
tr(Ω), a straightforward application of the mean value theorem

yields the existence of a convex combination of t and th, say r̃h ∈ L2
tr(Ω), such that

DA(r̃h)(t− th, s) = [A(t)− A(th), s] ∀ s ∈ L2
tr(Ω).

Then, applying (5.6) to the Galerkin error ((r,ρ), ζ) := ((t− th,σ − σh), ξ − ξh), we obtain that

C‖((t− th,σ − σh), ξ − ξh)‖H×Q

≤ sup
((s,τ),λ)∈H×Q

((s,τ),λ)6=0

[A(t,σ)−A(th,σh), (s, τ )] + [B(s, τ ), ξ − ξh] + [B(t− th,σ − σh),λ]

‖((s, τ ),λ)‖H×Q

≤ sup
(s,τ)∈H
(s,τ) 6=0

R(s, τ )

‖(s, τ )‖H
+ sup

λ∈Q
λ 6=0

[B(t− th,σ − σh),λ]

‖λ‖0;1/2,ΓN

, (5.11)
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where R(s, τ ) := [A(t,σ) − A(th,σh), (s, τ )] + [B(s, τ ), ξ − ξh]. But, from the second equation of
(3.9) and the definitions of B (cf. (3.11)) and G (cf. (3.12)), we see that [B(t − th,σ − σh),λ] =
〈g− σhν,λ〉ΓN

, which yields

sup
λ∈Q
λ6=0

[B(t− th,σ − σh),λ]

‖λ‖0;1/2,ΓN

= sup
λ∈Q
λ 6=0

〈g− σhν,λ〉ΓN

‖λ‖0;1/2,ΓN

= ‖g− σhν‖−1/2,ΓN
. (5.12)

Next, according to the first equation of (3.9) we observe that

R(s, τ ) = [F , (s, τ )]− [A(th,σh), (s, τ )]− [B(s, τ ), ξh] ∀ (s, τ ) ∈ H ,

which gives

R(s, τ ) = −E1(τ )− E2(τ ) +

∫
Ω

(σd
h −ψ(th)) : s ∀ (s, τ ) ∈ H . (5.13)

Then, applying the Cauchy-Schwarz inequality to the last term on the right hand side of (5.13), and
replacing the resulting expression together with (5.12) back into (5.11), we obtain (5.7). Finally, it is
easy to see from (5.13) and the first equation of (4.5) that (5.10) holds.

We now aim to bound the supremum on the right hand side of (5.7), for which we write(
E1 + E2

)
(τ ) = E1(τ − τ h) + E2(τ − τ h) (5.14)

with a suitable choice of τ h ∈ RTk(Th). To this end, and proceeding exactly as in [9, Section 4.2], we
need the Clément interpolation operator Ih : H1(Ω)→ Xh (cf. [5]), where

Xh :=
{
v ∈ C(Ω̄) : v|T ∈ P1(T ) ∀ T ∈ Th

}
.

A vectorial version of Ih, say Ih : H1(Ω) → Xh, which is defined componentwise by Ih, is also
required. The following lemma establishes the local approximation properties of Ih.

Lemma 5.2. There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there
holds

‖v − Ih(v)‖0,T ≤ c1hT ‖v‖1,∆(T ) ∀ T ∈ Th,

and
‖v − Ih(v)‖0,e ≤ c2h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh,

where ∆(T ) and ∆(e) are the union of all elements intersecting with T and e, respectively.

Proof. See [5].

Next, for each τ ∈ H(div; Ω) we consider its Helmholtz decomposition (see, e.g. [9, Section 4.2]
for details)

τ = ∇z + curl(χ) , (5.15)

where z ∈ H2(Ω) and χ ∈ H1(Ω) satisfy ∆z = div(τ ) in Ω,
∫

Ωχ = 0, and

‖z‖2,Ω + ‖χ‖1,Ω ≤ C‖τ‖div,Ω . (5.16)

Then, we let ζ := ∇z ∈ H1(Ω), χh := Ih(χ), and define

τ h := Πk
h(ζ) + curl(χh) ∈ RTk(Th), (5.17)
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where Πk
h is the Raviart-Thomas interpolation operator introduced before (cf. (4.10) and (4.11)). We

refer to (5.17) as a discrete Helmholtz decomposition of τ h. Therefore, we can write

τ − τ h = τ −Πk
h(ζ)− curl(χh) = ζ −Πk

h(ζ) + curl(χ− χh) , (5.18)

which, using (4.12) and the fact that div(ζ) = ∆z = div(τ ) in Ω, and denoting by I a generic identity
operator, yields

div(τ − τ h) = div
(
ζ −Πk

h(ζ)
)

= (I− Pkh)(div(ζ)) = (I− Pkh)(div(τ )). (5.19)

Hence, according to (5.8), (5.9), and (5.10), and using the foregoing identities, we find that

E1(τ − τ h) =
1

α

∫
Ω

(f + div(σh)) · (I− Pkh)(div(τ ))

+

∫
Ω

th : (ζ −Πk
h(ζ)) +

〈
(ζ −Πk

h(ζ)ν, ξh

〉
ΓN

+

∫
Ω

th : curl(χ− χh) + 〈curl(χ− χh)ν, ξh〉ΓN
, (5.20)

and

E2(τ − τ h) = κ

∫
Ω

(σd
h −ψ(th)) : curl(χ− χh) + κ

∫
Ω

(σd
h −ψ(th)) : (ζ −Πk

h(ζ)) . (5.21)

The following two lemmas provide the upper bounds for |E1(τ − τ h)| and |E2(τ − τ h)|.

Lemma 5.3. There exists C > 0, independent of h and α, such that

|E1(τ − τ h)| ≤ C

∑
T∈Th

{
1

α2
‖f− Pkh(f)‖20,T + h2

T ‖th −∇uh‖20,T + h2
T ‖curl(th)‖20,T

}
+

∑
e∈Eh(Ω)

he‖[[thS ]]‖20,e +
∑

e∈Eh(ΓD)

he‖[[thS ]]‖20,e

+
∑

e∈Eh(ΓN )

he

{∥∥∥∥thS +
dξh
dS

∥∥∥∥2

0,e

+ ‖ξh + uh‖20,e

}
1/2

‖τ‖div,Ω.

Proof. It follows exactly as in [9, Lemma 14], with th instead of 1
µσ

d
h. The main tools employed

are integration by parts, the Cauchy-Schwarz inequality, the approximation properties provided by
Lemma 5.2, the identities (4.10) and (4.11) characterizing Πk

h, the fact that the number of triangles in
∆(T ) and ∆(e) are bounded, the approximation properties (4.14) and (4.16) (with m = 1), and the
estimate (5.16). We omit further details here.

Lemma 5.4. There exists C > 0, independent of h, such that

|E2(τ − τ h)| ≤ C

∑
T∈Th

h2
T ‖σd

h −ψ(th)‖20,T + h2
T ‖curl(σd

h −ψ(th))‖20,T

+
∑

e∈E(T )

he‖[[(σd
h −ψ(th))S ]]‖20,e




1/2

‖τ‖div,Ω.

16



Proof. It follows analogously to the proof of [13, Lemma 4.6], whose main ideas are taken from [12,
Lemmas 4.3 and 4.4].

Having established the above bounds for |E1(τ − τ h)| and |E2(τ − τ h)|, we conclude from Lemma
5.1 and (5.14) that there exists C > 0, independent of h, such that

‖((t− th,σ − σh), ξ − ξh)‖H×Q ≤ C

∑
T∈Th

θ̂2
T + ‖g− σhν‖2−1/2,ΓN


1/2

, (5.22)

where

θ̂2
T :=

1

α2
‖f− Pkh(f)‖20,T + h2

T ‖th −∇uh‖20,T + h2
T ‖curl(th)‖20,T

+
∑

e∈E(T )∩Eh(Ω)

he‖[[thS ]]‖20,e +
∑

e∈E(T )∩Eh(ΓD)

he‖[[thS ]]‖20,e

+
∑

e∈E(T )∩Eh(ΓN )

he

{∥∥∥∥thS +
dξh
dS

∥∥∥∥2

0,e

+ ‖ξh + uh‖20,e

}

+ ‖σd
h −ψ(th)‖20,T + h2

T ‖curl(σd
h −ψ(th))‖20,T

+
∑

e∈E(T )

he‖[[(σd
h −ψ(th))S ]]‖20,e.

Now, in order to complete the upper bound for ‖((t − th,σ − σh), ξ − ξh)‖H×Q in terms of local
error indicators, we need to estimate the Neumann residual ‖g − σhν‖−1/2,ΓN

. Actually, this result
was already proved in [9]. It is stated as follows.

Lemma 5.5. Assume that the Neumann datum g ∈ L2(ΓN ). Then there exists C > 0, independent
of h, such that

‖g− σhν‖2−1/2,ΓN
≤ C

∑
e∈Eh(ΓN )

he‖g− σhν‖20,e.

Proof. See [9, Lemma 15].

It is important to recall here, as remarked in [9, Remark after Lemma 15], that the regularity of the
mesh Th insures that the constant C in Lemma 5.5 is independent of h, whence the estimate provided
there in terms of the computable local quantities ‖g − σhν‖0,e becomes suitable for the associated
adaptive algorithm. Without this assumption, it would not make sense to apply this theorem, and
we would have just to keep the expression ‖g− σhν‖−1/2,ΓN

in the a posteriori error estimator, thus
rendering a non-local and hence useless quantity for adaptivity.

Then, as a consequence of Lemmas 5.1 and 5.5, together with the estimate (5.22), we conclude that
there exists C > 0, independent of h, such that

‖((t− th,σ − σh), ξ − ξh)‖H×Q ≤ Cθ, (5.23)

where θ is the global a posteriori error estimator defined by (5.3) and (5.1).

On the other hand, the upper bound for ‖u − uh‖0,Ω is quite straightforward from the definition
of u and uh. Indeed, recalling that

u =
1

α
{f + div(σ)} and uh =

1

α

{
Pkh(f) + div(σh)

}
,
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we easily obtain

‖u− uh‖0,Ω ≤ 1

α

{
‖f− Pkh(f)‖0,Ω + ‖σ − σh‖div,Ω

}
. (5.24)

Finally, from (5.24) and (5.23) we have that there exists Crel > 0, independent of h, such that

‖u− uh‖0,Ω + ‖((t− th,σ − σh), ξ − ξh)‖H×Q ≤ Crelθ,

which proves the reliability of the estimator θ.

5.3 Efficiency

In this section we prove the efficiency of our a posteriori error estimator θ (lower bound in (5.4)). In
other words, we derive suitable upper bounds for the eleven terms defining the local error indicator
θ2
T (cf. (5.1)). We first notice, using the definitions of u (cf. (3.7)) and uh (cf. (5.2)), that

‖f− Pkh(f)‖20,T ≤ 2α2‖u− uh‖20,T + 2‖div
(
σ − σh

)
‖20,T . (5.25)

On the other hand, we notice that the converse of the derivation of (3.9) from (2.5) holds true. Indeed,
it is easy to show, applying integration by parts backwardly and using appropriate test functions, that
the unique solution ((t,σ), ξ) ∈ H × Q of (3.9) solves the original problem (2.5). Then, using that
σd = ψ(t) in Ω and applying the Lipschitz-continuity of A (cf. Lemma 3.2), but restricted to the
triangle T ∈ Th instead of Ω, we deduce that

‖σd
h −ψ(th)‖0,T ≤ ‖(σ − σh)d‖0,T + ‖µ(|t|)t− µ(|th|)th‖0,T ,

≤ ‖σ − σh‖0,T + γ0‖t− th‖0,T . (5.26)

Next, in order to bound the terms involving the mesh parameters hT and he, we make use of the results
and estimates available for the corresponding linear case (cf. [9, Section 4.3]). The techniques applied
there are based on triangle-bubble and edge-bubble functions, extension operators, and discrete trace
and inverse inequalities. For further details on these tools we refer particularly to [9, Lemmas 16 and
17, and eq. (67)].

Hence, the estimates of the remaining nine terms defining θ2
T (cf. (5.1)) are given as follows.

Lemma 5.6. There exist C1, C2 > 0, independent of h, such that

h2
T ‖curl(th)‖20,T ≤ C1‖t− th‖20,T ∀ T ∈ Th,

and
he‖[[thSe ]]‖20,e ≤ C2‖t− th‖20,ωe

∀ e ∈ Eh(Ω),

where ωe := ∪{ T ∈ Th : e ∈ E(T )}.

Proof. It follows as in the proof of [9, Lemma 19] by replacing there 1
µσh by th.

Lemma 5.7. There exists C3 > 0, independent of h, such that

h2
T ‖th −∇uh‖20,T ≤ C3

{
‖u− uh‖20,T + h2

T ‖t− th‖20,T
}
∀ T ∈ Th .

Proof. Similarly to the previous lemma, it follows by replacing 1
µσ

d
h by th in the proof of [9, Lemma

20], and then using that t = ∇u in Ω.
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Lemma 5.8. There exists C4 > 0, independent of h, such that for each e ∈ Eh(ΓD) there holds

he ‖[thS]‖20,e ≤ C4‖t− th‖20,Te ,

where Te is the triangle of Th having e as an edge.

Proof. Similarly to the previous lemma, it follows by replacing 1
µσ

d
h by th in the proof of [9, Lemma

21], and then using that t = ∇u in Ω and u = 0 in ΓD.

Lemma 5.9. Assume that Σh is quasi-uniform. Then there exists C5 > 0, independent of h, such
that ∑

e∈Eh(ΓN )

he

∥∥∥∥thS +
dξh
dS

∥∥∥∥2

0,e

≤ C5

 ∑
e∈Eh(ΓN )

‖t− th‖20,Te + ‖ξ − ξh‖20;1/2,ΓN

 ,

where, given e ∈ Eh(ΓN ), Te is the triangle of Th having e as edge.

Proof. It follows as in the proof of [9, Lemma 22], by replacing there 1
µσ

d
h by th, and then using that

t = ∇u in Ω.

Note, as in [9], that the estimate provided by Lemma 5.9 is the only nonlocal bound of the present
efficiency analysis. In addition, this lemma is the only one needing to assume that Σh is quasi-
uniform. However, under an additional local regularity assumption on ξ, but without assuming any
quasi-uniformity condition, we are able to prove the following local bound.

Lemma 5.10. Assume that ξ|e ∈ H1(e) for each e ∈ Eh(ΓN ). Then there exists C̃5 > 0, independent
of h, such that for each e ∈ Eh(ΓN ) there holds

he

∥∥∥∥thS +
dξh
dS

∥∥∥∥2

0,e

≤ C̃5

{
‖t− th‖20,Te + he

∥∥∥∥ ddS (ξ − ξh)

∥∥∥∥2

0,e

}
,

where Te is the triangle of Th having e as edge.

Proof. It suffices to replace again 1
µσ

d
h by th in [9, Lemma 23].

Next, we continue with the bound for the boundary terms on each e ∈ Eh(ΓN ).

Lemma 5.11. There exists C6 > 0, independent of h, such that for each e ∈ Eh(ΓN ) there holds

he‖ξh + uh‖20,e ≤ C6

{
he‖ξ − ξh‖20,e + ‖u− uh‖20,Te + h2

Te‖t− th‖20,Te
}
,

where Te is the triangle of Th having e as an edge.

Proof. It follows as in the proof of [9, Lemma 24], using that ξ = −u on ΓN , t = ∇u in Ω and
Lemma 5.7.

Lemma 5.12. Assume that g is piecewise polynomial. Then there exists C7 > 0, independent of h,
such that for each e ∈ Eh(ΓN ) there holds

he‖g− σhν‖20,e ≤ C7

{
‖σ − σh‖20,Te + h2

Te‖div(σ − σh)‖20,Te
}
, (5.27)

where Te is the triangle of Th having e as an edge.
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Proof. It follows as in the proof of [9, Lemma 25], using that g = σν on ΓN .

If g were not piecewise polynomial but sufficiently smooth, then higher order terms given by the
errors arising from suitable polynomial approximations would appear in (5.27). This explains the
eventual expression h.o.t. in (5.4).

Finally, for the efficiency of θ it only remains to provide upper bounds for the two terms completing
the definition of the local error indicator θ2

T (cf. (5.1)), which is established in the following lemma.

Lemma 5.13. There exist C8, C9 > 0, independent of h, such that

h2
T ‖curl(σd

h −ψ(th))‖20,T ≤ C8

{
‖t− th‖20,T + ‖σ − σh‖20,T

}
∀ T ∈ Th,

and
he‖[[(σd

h −ψ(th))S ]]‖20,e ≤ C9

{
‖t− th‖20,ωe

+ ‖σ − σh‖20,ωe

}
∀ e ∈ Eh .

Proof. It follows analogously to the proof of [13, Lemma 4.11], which applies [9, Lemma 18] to
ρh = σd

h − ψ(th) and ρ = σd − ψ(t) in Ω, and then uses the Lipschitz-continuity of A (cf. Lemma
3.2) restricted to T and ωe.

Consequently, the efficiency of θ follows straightforwardly from estimates (5.25) and (5.26), together
with Lemmas 5.7 throughout 5.13, after summing up over T ∈ Th.

6 Numerical results

In this section, we present four numerical examples demonstrating a good performance of the aug-
mented mixed finite element scheme (4.5), confirming the reliability and efficiency of the a posteriori
error estimator θ derived in Section 5, and showing the behaviour of the associated adaptive algorithm.
In all the computations we consider the specific finite element subspaces Hh and Qh given respectively
by (4.1) and (4.3), with k ∈ {0, 1, 2} and Σh̃ := Σ2h. We begin by introducing additional notations.
In what follows N stands for the total number of degrees of freedom (unknowns) of (4.5), that is,

N := 2(k + 1)× (# of edges in Th) + {3dk + 2k(k + 2)} × (# of elements in Th)

+ 2
{

(k + 1)× (# of edges in Σh̃) + 1
}
,

with dk := 1
2(k + 1)(k + 2). Also, the individual and total errors are defined by

e(t) := ‖t− th‖0,Ω, e(σ) := ‖σ − σh‖div,Ω,

e(ξ) := ‖ξ − ξh‖0;1/2,ΓN
, e(u) := ‖u− uh‖0,Ω,

e(t,σ, ξ) :=
{

[e(t)]2 + [e(σ)]2 + [e(ξ)]2
}1/2

, e(p) := ‖p− ph‖0,Ω,

e(t,σ, ξ,u) :=
{

[e(t)]2 + [e(σ)]2 + [e(ξ)]2 + [e(u)]2
}1/2

,

where ph and uh are computed by the postprocessing formulae (4.6) and (5.2), whereas the effectivity
index with respect to θ is given by

eff(θ) := e(t,σ, ξ,u) / θ.
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Then, we define the experimental rates of convergence

r(t) :=
log(e(t)/e′(t))

log(h/h′)
r(σ) :=

log(e(σ)/e′(σ))

log(h/h′)
,

r(ξ) :=
log(e(ξ)/e′(ξ))

log(h/h′)
, r(t,σ, ξ) :=

log(e(t,σ, ξ)/e′(t,σ, ξ))

log(h/h′)
,

and similarly for r(p) and r(u), where e and e′ denote the corresponding errors for two consecutive
triangulations with mesh sizes h and h′, respectively. Nevertheless, when the adaptive algorithm is
applied (see details below), the expression log(h/h′) appearing in the computation of the above rates
is replaced by −1

2 log(N/N ′), where N and N ′ denote the corresponding degrees of freedom of each
triangulation.

The numerical results presented below were obtained using a C++ code. The corresponding nonlin-
ear algebraic systems arising from (3.9) are solved by the Newton-Raphson method with a tolerance
of 10−6 and taking the solution of the associated linear Brinkman problem (µ = 1) as initial iteration
for the quasi-uniform scheme. In all the examples no more than four iterations were required to achive
the given tolerance. In turn, the linear systems were solved using the Conjugate Gradient method as
main solver, and applying a stopping criterion determined by a relative tolerance of 10−10.

The examples to be considered in this section, some of them taken from [9], are described next.
Example 1 and 2 (linear and nonlinear, respectively) are employed to illustrate the performance of
the augmented mixed finite element scheme (4.5) and to confirm the reliability and efficiency of the a
posteriori error estimator θ. Examples 3 and 4 are utilized to show the behaviour of the associated
adaptive algorithm, which applies the following procedure:

(1) Start with a coarse mesh Th.

(2) Solve the linear version of the discrete problem (4.5), in order to obtain an initial guest x0, for
the Newton iterations.

(3) Solve the discrete problem (4.5) for the actual mesh Th, with the actual initial guest x0.

(4) Compute θT (cf. (5.1)) for each triangle T ∈ Th,

(5) Evaluate stopping criterion (θ ≤ given tolerance) and decide to finish or go to next step.

(6) Use red-green-blue procedure (cf. [24]) to refine each T ′ ∈ Th whose indicator θT ′ satisfies

θT ′ ≥
1

2
max {θT : T ∈ Th} .

(7) Use the solution given by step 3 and the new mesh to interpolate a new initial guess x̃0 and then
replace x0 by x̃0.

(8) Define the new mesh as actual mesh Th and go to step 3.

For Example 1 we take µ = 1 and for the remaining three examples we consider the nonlinear
function µ : R+ → R+ given by the Carreau law

µ(t) := µ0 + µ1(1 + t2)(β−2)/2 ∀ t ∈ R+,

with µ0 = µ1 = 0.5 and β = 1.5. It is easy to check that the assumptions (2.2) and (2.3) are satisfied
with

γ0 = µ0 + µ1

{
|β − 2|

2
+ 1

}
and α0 = µ0.
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Hence, for the implementation of the augmented scheme (4.5) we use the stabilization parameter

κ = α0

γ2
0

, which certainly satisfies the required hypothesis κ ∈
(

0, 2α0

γ2
0

)
.

In Example 1 we consider Ω = (0, 1)2, ΓD =
{

(0, x2) ∈ R2 : 0 ≤ x2 ≤ 1
}

, ΓN = Γ \ Γ̄D, α = 1,
and choose the data f and g so that the exact solution is given for each x := (x1, x2)t ∈ Ω by

u(x) =

(
sin2(4x1) cos(4x2) sin(4x2)

sin(4x1) cos2(4x2) cos(4x1)

)
and

p(x) = cos(4x1) cos(4x2) exp(−x1).

It is easy to check that u is divergence free, and (u, p) is regular in the whole domain Ω.

In Example 2 we consider Ω = (0, 1)2, ΓD =
{

(w, 0), (0, w) ∈ R2 : 0 ≤ w ≤ 1
}

, ΓN = Γ \ Γ̄D,
α = 1

2π , and choose the data f and g so that the exact solution is given for each x := (x1, x2)t ∈ Ω by

u(x) =

(
(1 + x1 − exp(x1)) (1− cos(x2))

(exp(x1)− 1) (x2 − sin(x2))

)
and

p(x) =
1

2
exp(2πx1).

Note that u is divergence free and (u, p) is regular in the whole domain Ω.

In Example 3 we consider Ω = ]−1, 1[2\[0, 1]2, ΓD = {(−1, x2) ∈ R2 : −1 ≤ x2 ≤ 1}, ΓN = Γ \ Γ̄D,
α = 1, and choose f and g so that the exact solution is given for each x := (x1, x2)t ∈ Ω by

u(x) = curl
(

(x1 + 1)2
√

(x1 − 0.1)2 + (x2 − 0.1)2
)

and

p(x) =
1

x2 + 1.1
.

Note that Ω is an L-shaped domain and that u and p are singular at (0.1, 0.1) and along the line
x2 = −1.1, respectively. Hence, we should expect regions of high gradients around the origin, which
is the middle corner of the L, and along the line x2 = −1.

Finally, in Example 4 we consider Ω = ]−1, 1[2\ ([−1,−0.25]× [−1, 0.5] ∪ [0.25, 1]× [−1, 0.5]), ΓD =
{(x1, 1) ∈ R2 : −1 ≤ x1 ≤ 1}, ΓN = Γ \ Γ̄D, α = 10, and choose the data f and g so that the exact
solution is given for each x := (x1, x2)t ∈ Ω by

u(x) = curl
(

(x2 − 1)2
{√

(x1 + 0.3)2 + (x2 − 0.45)2

+
√

(x1 − 0.3)2 + (x2 − 0.45)2
})

and

p(x) =
1

x2 + 1.1
.

Note that Ω is a T -shaped domain and that u and p are singular at (−0.3, 0.45) and (0.3, 0.45), and
along the line x2 = −1.1, respectively. Hence, similarly to Example 3, we should expect regions of
high gradients around (−0.25, 0.5) and (0.25, 0.5), which are the middle corners of the T , and along
the line x2 = −1.

In Tables 6.1, 6.2, 6.3, and 6.4, we summarize the convergence history of the augmented mixed finite
element scheme (3.9) as applied to Example 1 and 2, for a sequence of quasi-uniform triangulations
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of each domain. We notice there that the rate of convergence O(hk+1) predicted by Theorem 4.2
(when s = k + 1) is attained by all the unknowns, including the postprocessed u and p (cf. Tables
6.2 and 6.4). In particular, as observed in the ninth column of Tables 6.1 and 6.3, the convergence
of ξh is a bit faster than expected, which could correspond to either a superconvergence phenomenon
or a special feature of these examples. A similar phenomenon holds for the variable u in Table 6.4
for k ≥ 1. We also remark the good behaviour of the a posteriori error estimator θ in this case. In
particular, in Table 6.1, we see that the effectivity index eff(θ) remains always in a neighborhood of
0.905 for k = 0, which illustrates the reliability and efficiency result provided by Theorem 5.1.

Next, in Tables 6.5, 6.6, 6.7, and 6.8, we provide the convergence history of the quasi-uniform and
adaptive schemes as applied to Examples 3 and 4. The stopping criterion in both adaptive refinements
is θ ≤ 0.2. We observe here, as expected, that the errors of the adaptive methods decrease faster
than those obtained by the quasi-uniform ones. This fact is better illustrated in Figures. 6.1 and
6.3 where we display the errors e(t,σ, ξ) vs. the degrees of freedom N for both refinements. In
addition, the effectivity indices remain again bounded from above and below, which confirms the
reliability and efficiency of θ for the associated adaptive algorithm as well. Some intermediate meshes
obtained with this procedure are displayed in Figures 6.2 and 6.4. Notice here that the adapted
meshes concentrate the refinements around the origin and the line x2 = −1 in Example 3, and around
the points (−0.25, 0.5) and (0.25, 0.5) and the line x2 = −1 in Example 4, which means that the
method is in fact able to recognize the regions with high gradients of the solutions. Finally, in order
to illustrate the accurateness of the adaptive scheme, in Figures 6.5, 6.6, 6.7, and 6.8, we display some
components of the solutions for both examples. For the field unknowns, the approximate ones are
placed at the left side whereas the exact ones are placed at the right side. In turn, the components
of the boundary unknown ξ are depicted along straight lines beginning at the points (−1,−1) and
(−1, 1) for the L-shaped and T -shaped domains, respectively, and then continuing counterclockwise.
This gives the 1D graphs in which the two approximate components of ξ are identified by red bullets
whereas the exact ones are identified by continuous blue lines.

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−1.5

−1

−0.5

0

0.5

1

1.5

log( N )

Figure 6.1: Example 3, e(t,σ, ξ) vs. N .
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k h N e(t) r(t) e(σ) r(σ) e(ξ) r(ξ) e(t,σ, ξ) r(t,σ, ξ) eff(θ)

1/16 7282 3.62e-1 −− 2.98e-0 −− 7.56e-2 −− 3.01e-0 −− 0.9047
1/20 11342 2.87e-1 1.04 2.39e-0 1.00 4.49e-2 2.34 2.41e-0 1.00 0.9049
1/24 16298 2.39e-1 1.02 1.99e-0 1.00 2.99e-2 2.24 2.01e-0 1.00 0.9050
1/28 22150 2.04e-1 1.01 1.71e-0 1.00 2.13e-2 2.18 1.72e-0 1.00 0.9051

0 1/32 28898 1.78e-1 1.01 1.49e-0 1.00 1.60e-2 2.14 1.50e-0 1.00 0.9052
1/36 36542 1.58e-1 1.01 1.33e-0 1.00 1.25e-2 2.11 1.34e-0 1.00 0.9052
1/48 64850 1.19e-1 1.00 9.96e-1 1.00 6.86e-3 2.08 1.00e-0 1.00 0.9053
1/64 115138 8.90e-2 1.00 7.47e-1 1.00 3.80e-3 2.05 7.53e-1 1.00 0.9053
1/96 258722 5.93e-2 1.00 4.98e-1 1.00 1.67e-3 2.03 5.02e-1 1.00 0.9054
1/128 459650 4.45e-2 1.00 3.74e-1 1.00 9.33e-4 2.02 3.76e-1 1.00 0.9054

1/16 22754 2.78e-2 −− 1.78e-1 −− 8.13e-3 −− 1.80e-1 −− 0.7826
1/20 35482 1.72e-2 2.17 1.14e-1 2.01 4.38e-3 2.78 1.15e-1 2.01 0.7899
1/24 51026 1.15e-2 2.19 7.90e-2 2.01 2.61e-3 2.84 7.99e-2 2.01 0.7948
1/28 69386 8.22e-3 2.19 5.80e-2 2.01 1.68e-3 2.88 5.86e-2 2.01 0.7982

1 1/32 90562 6.14e-3 2.19 4.44e-2 2.01 1.14e-3 2.90 4.48e-2 2.01 0.8006
1/36 114554 4.75e-3 2.18 3.50e-2 2.01 8.06e-4 2.92 3.54e-2 2.01 0.8024
1/48 203426 2.54e-3 2.17 1.97e-2 2.00 3.47e-4 2.93 1.98e-2 2.01 0.8058
1/64 361346 1.38e-3 2.14 1.11e-2 2.00 1.53e-4 2.84 1.11e-2 2.01 0.8082
1/96 812354 5.86e-4 2.11 4.91e-3 2.00 4.82e-5 2.85 4.94e-3 2.00 0.8102
1/128 1443586 3.20e-4 2.11 2.76e-3 2.00 2.12e-5 2.85 2.78e-3 2.00 0.8112

1/16 46418 1.40e-3 −− 7.33e-3 −− 3.48e-4 −− 7.47e-3 −− 0.5903
1/20 72422 6.53e-4 3.42 3.73e-3 3.03 1.48e-4 3.82 3.79e-3 3.04 0.6041
1/24 104186 3.50e-4 3.41 2.15e-3 3.02 6.84e-5 4.24 2.18e-3 3.04 0.6182
1/28 141710 2.08e-4 3.37 1.35e-3 3.02 3.47e-5 4.41 1.37e-3 3.03 0.6295

2 1/32 184994 1.34e-4 3.32 9.02e-4 3.02 2.01e-5 4.06 9.12e-4 3.02 0.6376
1/36 234038 9.08e-5 3.29 6.33e-4 3.01 1.25e-5 4.05 6.39e-4 3.02 0.6442
1/48 415730 3.57e-5 3.25 2.66e-4 3.01 4.02e-6 3.94 2.69e-4 3.02 0.6581
1/64 738626 1.41e-5 3.22 1.12e-4 3.01 1.30e-6 3.93 1.13e-4 3.01 0.6668
1/96 1660898 3.83e-6 3.22 3.29e-5 3.02 2.63e-7 3.94 3.31e-5 3.02 0.6669
1/128 2951810 1.52e-6 3.22 1.38e-5 3.02 8.48e-8 3.94 1.39e-5 3.02 0.6669

Table 6.1: Example 1, quasi-uniform scheme.
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k h N e(u) r(u) e(p) r(p)

1/16 7282 2.93e-2 −− 1.47e-1 −−
1/20 11342 2.35e-2 1.00 1.15e-1 1.10
1/24 16298 1.95e-2 1.00 9.50e-2 1.06
1/28 22150 1.68e-2 1.00 8.10e-2 1.04

0 1/32 28898 1.47e-2 1.00 7.06e-2 1.03
1/36 36542 1.30e-2 1.00 6.26e-2 1.02
1/48 64850 9.78e-3 1.00 4.68e-2 1.01
1/64 115138 7.33e-3 1.00 3.51e-2 1.01
1/96 258722 4.89e-3 1.00 2.33e-2 1.00
1/128 459650 3.67e-3 1.00 1.75e-2 1.00

1/16 22754 1.66e-3 −− 1.57e-2 −−
1/20 35482 1.05e-3 2.03 9.19e-3 2.40
1/24 51026 7.29e-4 2.02 5.92e-3 2.41
1/28 69386 5.35e-4 2.01 4.09e-3 2.40

1 1/32 90562 4.09e-4 2.01 2.97e-3 2.39
1/36 114554 3.23e-4 2.01 2.25e-3 2.36
1/48 203426 1.82e-4 2.00 1.15e-3 2.33
1/64 361346 1.03e-4 1.98 6.00e-4 2.26
1/96 812354 4.60e-5 1.98 2.43e-4 2.23
1/128 1443586 2.59e-5 2.00 1.32e-4 2.12

1/16 46418 6.42e-5 −− 9.95e-4 −−
1/20 72422 3.36e-5 2.91 4.55e-4 3.51
1/24 104186 1.93e-5 3.04 2.37e-4 3.57
1/28 141710 1.18e-5 3.16 1.36e-4 3.59

2 1/32 184994 7.93e-6 3.00 8.56e-5 3.49
1/36 234038 5.57e-6 3.00 5.68e-5 3.47
1/48 415730 2.35e-6 2.99 2.11e-5 3.44
1/64 738626 9.94e-7 3.00 7.86e-6 3.44
1/96 1660898 2.95e-7 3.00 1.92e-6 3.48
1/128 2951810 1.24e-7 3.00 7.03e-7 3.48

Table 6.2: Example 1, quasi-uniform scheme for the postprocessed unknowns.
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k h N e(t) r(t) e(σ) r(σ) e(ξ) r(ξ) e(t,σ, ξ) r(t,σ, ξ) eff(θ)

1/16 7266 8.58e-0 −− 3.20e+01 −− 1.44e-0 −− 3.31e+01 −− 0.1686
1/20 11322 6.72e-0 1.09 2.56e+01 0.99 7.33e-1 3.03 2.65e+01 1.00 0.1683
1/24 16274 5.49e-0 1.11 2.14e+01 0.99 4.28e-1 2.95 2.21e+01 1.00 0.1681
1/28 22122 4.63e-0 1.12 1.83e+01 1.00 2.77e-1 2.82 1.89e+01 1.00 0.1679

0 1/32 28866 3.98e-0 1.13 1.60e+01 1.00 1.94e-1 2.67 1.65e+01 1.00 0.1678
1/36 36506 3.48e-0 1.13 1.43e+01 1.00 1.44e-1 2.52 1.47e+01 1.01 0.1677
1/48 64802 2.50e-0 1.14 1.07e+01 1.00 7.57e-2 2.25 1.10e+01 1.01 0.1674
1/64 115074 1.80e-0 1.16 8.03e-0 1.00 4.43e-2 1.86 8.23e-0 1.01 0.1671
1/96 258626 1.12e-0 1.17 5.36e-0 1.00 2.42e-2 1.49 5.47e-0 1.01 0.1668
1/128 459522 8.01e-1 1.16 4.02e-0 1.00 1.64e-2 1.35 4.10e-0 1.01 0.1666

1/16 22722 2.08e-1 −− 1.21e-0 −− 2.04e-3 −− 1.22e-0 −− 0.1623
1/20 35442 1.32e-1 2.04 7.75e-1 1.99 9.23e-4 3.55 7.86e-1 1.99 0.1624
1/24 50978 9.13e-2 2.02 5.39e-1 1.99 4.80e-4 3.59 5.47e-1 1.99 0.1624
1/28 69330 6.71e-2 2.00 3.97e-1 1.99 2.76e-4 3.57 4.02e-1 1.99 0.1624

1 1/32 90498 5.14e-2 1.99 3.04e-1 1.99 1.72e-4 3.53 3.08e-1 1.99 0.1625
1/36 114482 4.06e-2 1.99 2.40e-1 2.00 1.14e-4 3.49 2.44e-1 2.00 0.1625
1/48 203330 2.29e-2 1.99 1.35e-1 2.00 4.30e-5 3.40 1.37e-1 2.00 0.1625
1/64 361218 1.29e-2 1.99 7.61e-2 2.00 1.68e-5 3.27 7.72e-2 2.00 0.1626
1/96 812162 5.77e-3 1.99 3.39e-2 2.00 4.51e-6 3.24 3.44e-2 2.00 0.1625
1/128 1443330 3.25e-3 1.99 1.91e-2 2.00 1.78e-6 3.24 1.93e-2 2.00 0.1626

1/16 46370 4.69e-3 −− 3.33e-2 −− 1.38e-5 −− 3.36e-2 −− 0.1581
1/20 72362 2.41e-3 2.98 1.71e-2 2.98 5.77e-6 3.89 1.73e-2 2.98 0.1580
1/24 104114 1.40e-3 2.98 9.91e-3 2.99 2.83e-6 3.91 1.00e-2 2.99 0.1580
1/28 141626 8.84e-4 2.99 6.25e-3 2.99 1.55e-6 3.92 6.31e-3 2.99 0.1580

2 1/32 184898 5.93e-4 2.99 4.19e-3 2.99 9.14e-7 3.93 4.23e-3 2.99 0.1580
1/36 233930 4.17e-4 2.99 2.94e-3 3.00 5.75e-7 3.94 2.97e-3 3.00 0.1580
1/48 415586 1.77e-4 2.99 1.24e-3 2.99 1.85e-7 3.94 1.26e-3 2.99 0.1580
1/64 738434 7.47e-5 2.99 5.25e-4 3.00 5.94e-8 3.94 5.31e-4 3.00 0.1580
1/96 1660610 2.22e-5 2.99 1.56e-4 3.00 1.20e-8 3.94 1.58e-4 3.00 0.1580
1/128 2951426 9.39e-6 2.99 6.59e-5 3.00 3.86e-9 3.94 6.65e-5 3.00 0.1581

Table 6.3: Example 2, quasi-uniform scheme.
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k h N e(u) r(u) e(p) r(p)

1/16 7266 1.24e-1 −− 3.90e-0 −−
1/20 11322 8.19e-2 1.84 3.12e-0 1.01
1/24 16274 5.93e-2 1.77 2.60e-0 1.01
1/28 22122 4.58e-2 1.68 2.22e-0 1.01

0 1/32 28866 3.71e-2 1.58 1.94e-0 1.00
1/36 36506 3.11e-2 1.49 1.73e-0 1.00
1/48 64802 2.12e-2 1.34 1.29e-0 1.00
1/64 115074 1.51e-2 1.18 9.70e-1 1.00
1/96 258626 9.54e-3 1.13 6.46e-1 1.00
1/128 459522 6.77e-3 1.19 4.85e-1 1.00

1/16 22722 1.56e-3 −− 1.38e-1 −−
1/20 35442 7.70e-4 3.17 8.87e-2 1.99
1/24 50978 4.35e-4 3.14 6.17e-2 1.99
1/28 69330 2.69e-4 3.10 4.54e-2 1.99

1 1/32 90498 1.79e-4 3.08 3.48e-2 2.00
1/36 114482 1.25e-4 3.06 2.75e-2 2.00
1/48 203330 5.21e-5 3.03 1.55e-2 2.00
1/64 361218 2.20e-5 3.00 8.71e-3 2.00
1/96 812162 6.52e-6 3.00 3.87e-3 2.00
1/128 1443330 2.75e-6 3.00 2.18e-3 2.00

1/16 46370 1.96e-5 −− 3.60e-3 −−
1/20 72362 8.04e-6 4.00 1.84e-3 3.01
1/24 104114 3.88e-6 4.00 1.06e-3 3.01
1/28 141626 2.09e-6 4.00 6.67e-4 3.01

2 1/32 184898 1.23e-6 3.96 4.46e-4 3.01
1/36 233930 7.65e-7 4.05 3.13e-4 3.01
1/48 415586 2.42e-7 4.01 1.32e-4 3.01
1/64 738434 7.64e-8 4.00 5.54e-5 3.01
1/96 1660610 1.51e-8 4.00 1.63e-5 3.01
1/128 2951426 4.78e-9 4.00 6.86e-6 3.01

Table 6.4: Example 2, quasi-uniform scheme for the postprocessed unknowns.
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k h N e(t) r(t) e(σ) r(σ) e(ξ) r(ξ) e(t,σ, ξ) r(t,σ, ξ) eff(θ)

1/2 366 3.39e-0 −− 1.59e+01 −− 1.55e+01 −− 2.25e+01 −− 1.1530
1/4 1402 2.15e-0 0.66 1.11e+01 0.52 6.37e-0 1.29 1.30e+01 0.79 1.0015
1/6 3110 1.50e-0 0.90 8.70e-0 0.61 3.65e-0 1.37 9.55e-0 0.76 0.9548
1/8 5490 1.12e-0 1.02 7.16e-0 0.68 2.25e-0 1.68 7.58e-0 0.80 0.9281
1/10 8542 9.00e-1 0.96 6.05e-0 0.76 1.53e-0 1.74 6.30e-0 0.83 0.9170
1/12 12266 7.70e-1 0.86 5.22e-0 0.80 1.15e-0 1.56 5.40e-0 0.84 0.9148
1/14 16662 6.77e-1 0.83 4.59e-0 0.83 9.21e-1 1.45 4.73e-0 0.86 0.9151
1/16 21730 6.01e-1 0.89 4.09e-0 0.86 7.50e-1 1.54 4.21e-0 0.88 0.9149

0 1/18 27470 5.35e-1 0.98 3.69e-0 0.88 6.11e-1 1.74 3.78e-0 0.91 0.9137
1/20 33882 4.78e-1 1.06 3.36e-0 0.90 4.97e-1 1.96 3.43e-0 0.93 0.9119
1/40 134962 2.25e-1 1.09 1.75e-0 0.94 1.01e-1 2.29 1.76e-0 0.96 0.9056
1/80 538722 1.11e-1 1.02 8.84e-1 0.98 2.28e-2 2.15 8.91e-1 0.99 0.9066
1/160 2152642 5.53e-2 1.00 4.43e-1 1.00 5.51e-3 2.05 4.47e-1 1.00 0.9065
1/200 3362802 4.42e-2 1.00 3.55e-1 1.00 3.51e-3 2.02 3.58e-1 1.00 0.9064
1/220 4068682 4.02e-2 1.00 3.23e-1 1.00 2.90e-3 2.02 3.25e-1 1.00 0.9063
1/240 4841762 3.68e-2 1.00 2.96e-1 1.00 2.43e-3 2.01 2.98e-1 1.00 0.9067
1/300 7564202 2.95e-2 1.00 2.37e-1 1.00 1.55e-3 2.01 2.38e-1 1.00 0.9067
1/400 13445602 2.21e-2 1.00 1.77e-1 1.00 8.70e-4 2.01 1.79e-1 1.00 0.9065

1/2 1114 1.51e-0 −− 7.34e-0 −− 5.12e-0 −− 9.08e-0 −− 0.8729
1/4 4338 6.63e-1 1.18 3.84e-0 0.94 1.95e-0 1.39 4.35e-0 1.06 0.8278
1/6 9674 4.50e-1 0.96 2.36e-0 1.20 1.16e-0 1.28 2.66e-0 1.21 0.8336
1/8 17122 3.58e-1 0.79 1.60e-0 1.34 7.85e-1 1.35 1.82e-0 1.33 0.8606
1/10 26682 2.57e-1 1.49 1.16e-0 1.45 5.02e-1 2.01 1.29e-0 1.54 0.8561

1 1/12 38354 1.71e-1 2.24 8.75e-1 1.54 3.00e-1 2.81 9.40e-1 1.73 0.8281
1/14 52138 1.12e-1 2.76 6.81e-1 1.62 1.76e-1 3.48 7.12e-1 1.80 0.8031
1/16 68034 7.59e-2 2.89 5.44e-1 1.68 1.06e-1 3.75 5.59e-1 1.81 0.7919
1/18 86042 5.59e-2 2.60 4.44e-1 1.72 7.17e-2 3.36 4.53e-1 1.79 0.7920
1/20 106162 4.50e-2 2.06 3.69e-1 1.75 5.45e-2 2.61 3.76e-1 1.78 0.7979
1/40 423522 1.19e-2 1.92 1.02e-1 1.85 9.66e-3 2.50 1.03e-1 1.86 0.8356

1/2 2246 7.37e-1 −− 3.52e-0 −− 2.42e-0 −− 4.33e-0 −− 0.6759
1/4 8810 4.43e-1 0.73 1.34e-0 1.39 1.15e-0 1.07 1.82e-0 1.25 0.7723
1/6 19694 2.98e-1 0.98 6.60e-1 1.75 6.33e-1 1.48 9.61e-1 1.58 0.8532

2 1/8 34898 1.61e-1 2.15 3.73e-1 1.98 3.02e-1 2.57 5.06e-1 2.23 0.6371
1/10 54422 8.71e-2 2.74 2.29e-1 2.19 1.44e-1 3.32 2.84e-1 2.59 0.5190
1/12 78266 5.31e-2 2.72 1.50e-1 2.34 7.77e-2 3.38 1.77e-1 2.61 0.5272
1/14 106430 3.45e-2 2.79 1.03e-1 2.43 4.66e-2 3.32 1.18e-1 2.62 0.5931

Table 6.5: Example 3, quasi-uniform scheme.
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k h N e(t) r(t) e(σ) r(σ) e(ξ) r(ξ) e(t,σ, ξ) r(t,σ, ξ) eff(θ)

0.5000 366 3.39e-0 −− 1.59e+01 −− 1.55e+01 −− 2.25e+01 −− 1.1530
0.5000 484 3.00e-0 0.88 1.52e+01 0.36 8.34e-0 4.45 1.76e+01 1.78 0.9389
0.5000 674 2.48e-0 1.15 1.14e+01 1.74 7.01e-0 1.05 1.36e+01 1.55 0.9263
0.5000 1032 1.90e-0 1.26 1.01e+01 0.57 3.88e-0 2.78 1.09e+01 1.01 0.8639
0.5000 1396 1.59e-0 1.16 7.51e-0 1.93 3.61e-0 0.48 8.49e-0 1.68 0.8574
0.5000 2138 1.24e-0 1.16 6.15e-0 0.94 1.77e-0 3.36 6.52e-0 1.24 0.8077
0.5000 3506 9.55e-1 1.07 4.61e-0 1.16 1.38e-0 1.00 4.91e-0 1.15 0.8192
0.2500 6558 6.93e-1 1.02 3.39e-0 0.98 9.43e-1 1.21 3.59e-0 1.00 0.8037
0.2500 10426 5.35e-1 1.12 2.66e-0 1.05 3.67e-1 4.07 2.74e-0 1.17 0.7843

0 0.1768 17278 4.15e-1 1.00 2.02e-0 1.10 2.26e-1 1.92 2.07e-0 1.10 0.7757
0.1250 33354 2.98e-1 1.00 1.42e-0 1.07 1.05e-1 2.32 1.45e-0 1.08 0.7645
0.0884 59296 2.23e-1 1.01 1.04e-0 1.08 5.83e-2 2.06 1.06e-0 1.08 0.7579
0.0625 103338 1.70e-1 0.99 7.91e-1 0.97 3.36e-2 1.98 8.10e-1 0.98 0.7555
0.0625 177166 1.28e-1 1.04 5.91e-1 1.08 1.86e-2 2.19 6.05e-1 1.08 0.7519
0.0442 324068 9.58e-2 0.97 4.44e-1 0.95 1.08e-2 1.81 4.54e-1 0.95 0.7552
0.0313 559566 7.24e-2 1.02 3.35e-1 1.03 6.35e-3 1.94 3.43e-1 1.03 0.7560
0.0221 859962 5.86e-2 0.98 2.71e-1 0.99 3.58e-3 2.66 2.77e-1 0.99 0.7550
0.0156 1582206 4.37e-2 0.97 2.01e-1 0.98 2.38e-3 1.35 2.06e-1 0.98 0.7524
0.0156 2413766 3.50e-2 1.05 1.58e-1 1.13 1.29e-3 2.88 1.62e-1 1.13 0.7481
0.0110 4324014 2.65e-2 0.95 1.22e-1 0.89 7.59e-4 1.83 1.25e-1 0.90 0.7568

0.5000 1114 1.51e-0 −− 7.34e-0 −− 5.12e-0 −− 9.08e-0 −− 0.8729
0.5000 1322 9.65e-1 5.21 7.01e-0 0.54 2.19e-0 9.94 7.40e-0 2.38 0.7937
0.5000 2058 7.06e-1 1.41 3.90e-0 2.64 2.10e-0 0.19 4.49e-0 2.26 0.7891
0.5000 2546 5.16e-1 2.95 3.61e-0 0.72 1.11e-0 6.02 3.81e-0 1.53 0.7893
0.5000 4162 4.18e-1 0.86 1.67e-0 3.14 1.08e-0 0.09 2.03e-0 2.56 0.7705

1 0.5000 4626 1.91e-1 14.85 1.59e-0 0.94 1.68e-1 35.21 1.61e-0 4.41 0.7206
0.5000 7098 1.35e-1 1.61 1.00e-0 2.16 1.66e-1 0.07 1.03e-0 2.11 0.7158
0.5000 11198 8.37e-2 2.10 6.14e-1 2.15 1.15e-1 1.62 6.30e-1 2.14 0.7141
0.3536 17566 5.41e-2 1.94 3.72e-1 2.22 6.04e-2 2.84 3.81e-1 2.24 0.6854
0.2500 27334 3.47e-2 2.01 2.25e-1 2.27 2.55e-2 3.90 2.29e-1 2.29 0.6636
0.2500 41090 2.17e-2 2.30 1.47e-1 2.10 1.59e-2 2.32 1.49e-1 2.11 0.6543
0.1768 59146 1.42e-2 2.35 1.11e-1 1.56 7.09e-3 4.45 1.12e-1 1.59 0.7023

0.5000 2246 7.37e-1 −− 3.52e-0 −− 2.42e-0 −− 4.33e-0 −− 0.6759
0.5000 2552 4.95e-1 6.22 3.06e-0 2.18 1.15e-0 11.65 3.31e-0 4.23 0.6437
0.5000 4106 4.51e-1 0.40 2.04e-0 1.70 1.16e-0 -0.03 2.39e-0 1.36 0.7652
0.5000 4718 1.73e-1 13.76 1.15e-0 8.25 3.06e-1 19.15 1.20e-0 9.87 0.6242

2 0.5000 5936 1.73e-1 0.03 1.11e-0 0.32 3.13e-1 -0.20 1.17e-0 0.28 0.7404
0.5000 8810 4.63e-2 6.66 3.49e-1 5.86 8.74e-2 6.46 3.63e-1 5.91 0.6054
0.5000 9992 3.33e-2 5.23 3.36e-1 0.59 3.27e-2 15.63 3.40e-1 1.05 0.7023
0.5000 15290 2.17e-2 2.02 1.55e-1 3.65 2.49e-2 1.29 1.58e-1 3.59 0.6374
0.5000 20648 1.02e-2 5.03 8.33e-2 4.12 1.16e-2 5.05 8.48e-2 4.15 0.5758

Table 6.6: Example 3, adaptive scheme.
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k h N e(t) r(t) e(σ) r(σ) e(ξ) r(ξ) e(t,σ, ξ) r(t,σ, ξ) eff(θ)

0.3750 724 1.40e-0 −− 7.46e-0 −− 6.08e-0 −− 9.73e-0 −− 1.7390
0.1875 2790 8.60e-1 0.70 4.68e-0 0.67 2.57e-0 1.24 5.41e-0 0.85 1.7570
0.1250 6200 6.18e-1 0.82 3.43e-0 0.77 1.69e-0 1.04 3.87e-0 0.82 1.7718
0.0938 10954 4.64e-1 1.00 2.73e-0 0.79 1.14e-0 1.34 3.00e-0 0.89 1.7505
0.0750 17052 3.65e-1 1.07 2.27e-0 0.83 8.01e-1 1.60 2.44e-0 0.93 1.7282

0 0.0625 24494 3.02e-1 1.05 1.94e-0 0.88 5.82e-1 1.75 2.04e-0 0.96 1.7154
0.0536 33280 2.59e-1 1.00 1.68e-0 0.92 4.45e-1 1.75 1.76e-0 0.98 1.7116
0.0469 43410 2.28e-1 0.96 1.48e-0 0.95 3.57e-1 1.64 1.54e-0 0.99 1.7126
0.0417 54884 2.04e-1 0.94 1.32e-0 0.96 2.98e-1 1.53 1.37e-0 0.99 1.7146
0.0375 67702 1.85e-1 0.94 1.19e-0 0.97 2.55e-1 1.48 1.23e-0 0.99 1.7150
0.0188 269802 8.70e-2 1.09 6.05e-1 0.98 6.44e-2 1.99 6.14e-1 1.01 1.6799
0.0094 1077202 4.12e-2 1.08 3.03e-1 1.00 1.34e-2 2.26 3.06e-1 1.00 1.7048

0.3750 2214 5.81e-1 −− 3.15e-0 −− 2.18e-0 −− 3.87e-0 −− 1.6991
0.1875 8650 2.96e-1 0.97 1.56e-0 1.02 9.92e-1 1.14 1.87e-0 1.05 1.5416
0.1250 19310 1.87e-1 1.12 9.19e-1 1.30 5.55e-1 1.43 1.09e-0 1.33 1.3667
0.0938 34194 1.44e-1 0.91 5.84e-1 1.58 3.76e-1 1.35 7.09e-1 1.49 1.3268

1 0.0750 53302 1.16e-1 0.97 3.93e-1 1.77 2.76e-1 1.39 4.95e-1 1.62 1.3085
0.0625 76634 9.21e-2 1.27 2.82e-1 1.82 2.02e-1 1.72 3.59e-1 1.76 1.2165
0.0536 104190 7.09e-2 1.70 2.13e-1 1.85 1.43e-1 2.22 2.66e-1 1.95 1.0810
0.0469 135970 5.31e-2 2.16 1.66e-1 1.86 9.95e-2 2.73 2.00e-1 2.11 0.9717
0.0417 171974 3.94e-2 2.54 1.33e-1 1.88 6.90e-2 3.11 1.55e-1 2.19 0.9067

0.3750 4472 3.23e-1 −− 1.69e-0 −− 1.17e-0 −− 2.08e-0 −− 1.1581
0.1875 17582 1.74e-1 0.89 7.14e-1 1.25 5.10e-1 1.19 8.95e-1 1.22 1.0612

2 0.1250 39332 1.31e-1 0.69 3.17e-1 2.01 3.24e-1 1.12 4.71e-1 1.58 1.1396
0.0938 69722 9.33e-2 1.19 1.65e-1 2.27 2.05e-1 1.60 2.79e-1 1.83 0.9407
0.0750 108752 6.23e-2 1.81 1.00e-1 2.22 1.22e-1 2.31 1.70e-1 2.22 0.7126
0.0625 156422 4.04e-2 2.38 6.30e-2 2.55 7.23e-2 2.88 1.04e-1 2.69 0.5927

Table 6.7: Example 4, quasi-uniform scheme.
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k h N e(t) r(t) e(σ) r(σ) e(ξ) r(ξ) e(t,σ, ξ) r(t,σ, ξ) eff(θ)

0.3750 724 1.40e-0 −− 7.46e-0 −− 6.08e-0 −− 9.73e-0 −− 1.7390
0.3750 942 1.17e-0 1.37 6.65e-0 0.88 3.21e-0 4.86 7.47e-0 2.00 1.5176
0.3750 1334 1.02e-0 0.81 4.91e-0 1.74 2.93e-0 0.51 5.81e-0 1.45 1.4362
0.2500 2414 7.23e-1 1.15 4.09e-0 0.61 1.56e-0 2.13 4.44e-0 0.91 1.4099
0.2500 3324 6.09e-1 1.08 3.01e-0 1.92 1.42e-0 0.59 3.38e-0 1.70 1.3028
0.1875 4516 4.87e-1 1.46 2.49e-0 1.24 7.03e-1 4.58 2.63e-0 1.64 1.1800
0.1875 6676 3.94e-1 1.09 2.02e-0 1.07 5.18e-1 1.56 2.12e-0 1.10 1.1806
0.1250 11264 2.93e-1 1.12 1.58e-0 0.95 2.67e-1 2.53 1.62e-0 1.02 1.1825

0 0.1250 16740 2.47e-1 0.86 1.25e-0 1.17 1.73e-1 2.21 1.29e-0 1.18 1.1262
0.1250 27176 1.86e-1 1.17 9.96e-1 0.93 9.37e-2 2.52 1.02e-0 0.96 1.1629
0.0884 41338 1.51e-1 1.02 7.97e-1 1.06 6.74e-2 1.57 8.14e-1 1.07 1.1508
0.0625 69714 1.18e-1 0.92 6.13e-1 1.01 3.47e-2 2.54 6.25e-1 1.01 1.1347
0.0625 110000 9.18e-2 1.11 4.84e-1 1.04 2.19e-2 2.02 4.93e-1 1.04 1.1440
0.0442 168592 7.39e-2 1.02 3.95e-1 0.95 1.60e-2 1.47 4.02e-1 0.96 1.1607
0.0442 232804 6.39e-2 0.91 3.39e-1 0.95 9.24e-3 3.41 3.45e-1 0.95 1.1568
0.0313 372780 5.00e-2 1.04 2.67e-1 1.02 6.48e-3 1.51 2.71e-1 1.02 1.1598
0.0313 542152 4.14e-2 1.02 2.20e-1 1.02 4.46e-3 1.99 2.24e-1 1.02 1.1673

0.3750 2214 5.81e-1 −− 3.15e-0 −− 2.18e-0 −− 3.87e-0 −− 1.6991
0.3750 2518 3.58e-1 7.51 2.61e-0 2.89 1.02e-0 11.81 2.83e-0 4.89 1.4725
0.3750 3150 3.09e-1 1.33 1.63e-0 4.21 1.03e-0 -0.10 1.95e-0 3.30 1.3267
0.3750 3798 1.93e-1 5.02 1.23e-0 2.99 4.82e-1 8.13 1.34e-0 4.05 1.1749

1 0.3750 5090 1.69e-1 0.90 8.04e-1 2.91 4.84e-1 -0.03 9.54e-1 2.30 1.2067
0.3750 5490 8.81e-2 17.27 6.98e-1 3.75 1.13e-1 38.54 7.12e-1 7.72 1.1211
0.3750 7706 7.38e-2 1.05 3.88e-1 3.46 1.11e-1 0.10 4.10e-1 3.26 0.8694
0.2500 10582 4.30e-2 3.41 3.31e-1 1.00 4.99e-2 5.03 3.37e-1 1.23 1.0209
0.2500 18142 2.62e-2 1.83 1.56e-1 2.79 4.16e-2 0.67 1.64e-1 2.68 0.8562

0.3750 4472 3.23e-1 −− 1.69e-0 −− 1.17e-0 −− 2.08e-0 −− 1.1581
0.3750 4880 1.86e-1 12.70 1.19e-0 8.03 4.98e-1 19.48 1.31e-0 10.67 0.9807
0.3750 6062 1.77e-1 0.45 8.94e-1 2.66 5.10e-1 -0.23 1.04e-0 2.06 1.0595

2 0.3750 6830 9.99e-2 9.56 6.44e-1 5.50 2.02e-1 15.57 6.82e-1 7.14 0.9906
0.3750 9104 9.37e-2 0.44 2.37e-1 6.97 2.05e-1 -0.10 3.27e-1 5.13 0.8652
0.3750 9512 2.38e-2 62.55 1.88e-1 10.41 3.21e-2 84.45 1.93e-1 24.09 0.7652
0.3750 11786 2.21e-2 0.68 1.78e-1 0.54 3.27e-2 -0.17 1.82e-1 0.52 0.9934

Table 6.8: Example 4, adaptive scheme.
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Figure 6.2: Example 3, adapted meshes for k = 0 with 484, 2138, 10426, and 33354 degrees of freedom.

Figure 6.3: Example 4, e(t,σ, ξ) vs. N .
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Figure 6.4: Example 4, adapted meshes for k = 0 with 1334, 4516, 11264, and 27176 degrees of
freedom.
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Figure 6.5: Example 3, approximate and exact σ21 and σ22 (k = 0 and N = 177166) for adaptive
scheme.

Figure 6.6: Example 3, approximate and exact ξ and u2 (k = 0 and N = 3506, 177166) for adaptive
scheme.
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Figure 6.7: Example 4, approximate and exact σ11 and σ21 (k = 0 and N = 168592) for adaptive
scheme.

Figure 6.8: Example 4, approximate and exact ξ and u2 (k = 0 and N = 6676, 168592) for adaptive
scheme.
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