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SUMMARY

The goal of this paper is to compare two computational modelsfor the inverse problem of
electroencephalography: the localization of brain activity from measurements of the electric potential on
the surface of the head. The source current is modeled as a dipole whose localization and polarization
has to be determined. Two methods are considered for solvingthe corresponding forward problems: the so
calledsubtraction approachanddirect approach. The former is based on subtracting a fundamental solution,
which has the same singular character of the actual solution, and solving computationally the resulting non-
singular problem. Instead, the latter consists in solving directly the problem with singular data by means
of an adaptive process based on an a posteriori error estimator, which allows creating meshes appropriately
refined around the singularity. A set of experimental tests for both, the forward and the inverse problems,
are reported. The main conclusion of these tests is that the direct approach combined with adaptivity is
preferable when the localization of the dipole is close to aninterface between brain tissues with different
conductivities.
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1. INTRODUCTION

It is common practice in cognitive research to reconstruct current sources in the human brain by
means of their electric potentials, measured with electrodes which are fixed onthe scalp (EEG) [1].

Electromagnetic cerebral activity is due to the motion of ions in the active regions of the
brain. This movement generates the so calledimpressed current(or primary current) that in turn
creates ohmic currents in the surrounding environment calledreturn currents. We are interested in
determining the impressed current.

The reconstruction of the position and of some physical characteristics ofthe current density that
gives rise to the EEG measurements is called the inverse problem. For an accurate reconstruction
of the primary current it is important to be able to model realistically tissue conductivity
inhomogeneities.

Since the frequency spectrum for electrophysiological signals in EEG and MEG is below 1,000
Hz, often between 0.1 and 100 Hz, most theoretical works on biomedical applications such as
[2, 3, 4, 5] use thestatic approximation of the Maxwell equationsin which the time variation of both
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electric and magnetic fields are disregarded. The static model is not the only possible simplification
of the Maxwell equations. Other models that can be taken into account are the electro-quasistatic
model, in which the time variation of the magnetic induction is not considered and themagneto-
quasistatic modelor eddy current equations, which are derived from the Maxwell equations by
neglecting the time derivative of the electric field. It is also possible to study theproblem using the
full system of Maxwell. Some references on these approaches are [6, 7, 8, 9].

We focus on the static model which leads to the electrostatics problem. We consider two strategies
to approximate the potential for the electrostatics problem by using FEM. One of them is the
“subtraction approach” which has been studied in [10, 4, 11, 12, 13, 14, 15], for example. In this
formulation it is necessary to assume that the dipole is located in a region with a homogeneous
conductivity. Then, it is possible to consider a more regular unknown, namely, the difference
between the total potential and the fundamental solution with constant conductivity, which allows
us to overcome the difficulties arising from the singularity of the source.

The other method is a direct approach in which the unknown is the total potential and the dipole
source is incorporated directly in the formulation. These two approaches has been compared in [16]
in terms of computational complexity and accuracy.

More recently the direct approach was further analyzed in [17] where an a posteriori error
estimate and an adaptive scheme which allows improving the efficiency of this approach were also
introduced.

In this paper we report some numerical computations in order to compare the two methods, the
subtraction approach and the direct approach with adaptivity. We use them for the approximation of
the inverse problem when the conductivity has a jump across the interface between different tissues
(we recall that this is the case in the real physiological framework). We study in particular the case
of a dipolar source located close to the interface between two regions with different conductivities
(which again is physiologically realistic).

The paper is organized as follows: in Section2 we introduce the methods and the assumptions to
obtain well-posed problems, we establish some a priori error estimates and, finally, we introduce the
a posteriori error estimator for the direct approach. In Section3, we analyze the performances of the
subtraction method and the direct approach with adaptivity for the corresponding forward problem.
In Section4 we explain in detail how we solve the inverse problem. In Section5 we focus on how
we generate reliable measurements for the simulations. In Section6 we report numerical results for
the inverse problem and, finally, in Section7 we draw some conclusions.

2. TWO APPROXIMATION METHODS

We start introducing the equations.

2.1. Continuous problem

In almost all the studies concerning the neural generation of electromagnetic fields the static
approximation of Maxwell equations is considered:































divD = ρ ,

curlE = 0 ,

curlH = J ,

divB = 0 ,

(2.1)

whereE andD are the electric field and electric displacement, respectively,ρ the electric charge
density andJ the electric current density. ByH andB we denote the magnetic field and the
magnetic induction, respectively. A detailed justification of the choice of the static model in this
context can be found for instance in Plonsey & Heppner [18].
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For biological tissues, the linear constitutive equationsD = εE andB = µH can be assumed
(see, for instance, [8, 7]), whereε andµ correspond to the electric permittivity and the magnetic
permeability, respectively.

From the second equation of (2.1), we conclude that there exists a scalar potentialu such that
E = −∇u. From Ohm law, the total current densityJ is the sum of the impressed current plus the
return currents

J = Jp + σE = Jp − σ∇u ,
whereσ is the conductivity, which is a uniformly positive definite matrix with bounded entries.

From the third equation in (2.1) it follows that

0 = divJ = div(Jp − σ∇u) .

Henceu is solution of the equation

div(σ∇u) = divJp .

We consider a domainΩ, open, connected and bounded, with Lipschitz continuous boundary∂Ω
included inRd, whered = 2 or d = 3 (Ω represents the human head ford = 3 or a two-dimensional
section ford = 2). We definen to be the outer unit normal vector on∂Ω. We assume thatJp

is supported inΩ. SinceJ |Ω · n = J |
Rd\Ω · n = 0 on the interface∂Ω andJp · n = 0 on ∂Ω, it

follows that(σ∇u) · n = 0 on∂Ω. Then, we obtain this problem:
{

div(σ∇u) = divJp in Ω ,
(σ∇u) · n = 0 on∂Ω .

Let us assume that there is a small activated region centered at a pointx0 and that the observation
points are far from it. In this case the primary currentJp is typically modeled as a dipolepδx0

,
whereδx0

is the Dirac delta distribution centered atx0 (see [4]). So, in the following, we consider
the electrostatic problem above with a dipole source term:

{

div(σ∇u) = div(p δx0
) in Ω ,

(σ∇u) · n = 0 on∂Ω ,
(2.2)

wherex0 is an inner point ofΩ, andp 6= 0 is the polarization vector. In [19] the existence and
uniqueness of solutionu ∈ Lp(Ω), 1 < p < 3/2, of this problem (ford = 3) has been studied under
the assumption of some additional regularity ofσ in a vicinity of x0. We recall that forp ≥ 1,

Lp(Ω) :=

{

v : Ω → R :

∫

Ω

|v|p <∞
}

is a vector space endowed with the norm

‖v‖0,p,Ω :=

(∫

Ω

|v|p
)1/p

.

We will give more details below.
The singularity of the dipole source can be treated by using the so-calledsubtraction approach. In

what follows we explain this technique. For using it, we need to assume that there exists a nonempty
open subdomainΩ0 ⊂ Ω around the source positionx0 with constant conductivityσ0 (in general,
a matrix). The conductivityσ is then split into two parts,

σ = σ0 + σs , (2.3)

so thatσ0 is constant over the whole domainΩ andσs vanishes in the subdomainΩ0. The total
potentialu is also split into two parts:

u = u0 + us, (2.4)
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whereu0 satisfies
div(σ0∇u0) = div(p δx0

). (2.5)

An analytic formula foru0 in the case of a homogeneous conductivityσ0 is known (see [20]) :

u0(x) =























ptσ−1
0 (x− x0)

2π
√

detσ0(x− x0)tσ
−1
0 (x− x0)

, if d = 2 ,

ptσ−1
0 (x− x0)

4π
√

detσ0

(

(x− x0)tσ
−1
0 (x− x0)

)3/2
, if d = 3 .

The above expression simplifies as follows when the medium is isotropic (i.e.,σ0 = σ0I with σ0
a constant) :

u0(x) =



















pt(x− x0)

2πσ0|x− x0|2
, if d = 2 ,

pt(x− x0)

4πσ0|x− x0|3
, if d = 3 .

Replacing (2.3) and (2.4) in (2.2) and using thatu0 satisfies (2.5), we obtain

div[(σ0 + σs)∇(u0 + us)] = div(p δx0
) = div(σ0∇u0) ,

and hence
div(σ∇us) = div[(σ0 + σs)∇us] = − div(σs∇u0) .

On the other hand, since

0 = (σ∇u) · n = (σ∇(u0 + us)) · n on∂Ω ,

we derive the Neumann boundary condition

(σ∇us) · n = −(σ∇u0) · n on∂Ω .

In conclusion,us solves the boundary value problem


















div(σ∇us) = − div(σs∇u0) in Ω ,

(σ∇us) · n = −(σ∇u0) · n on∂Ω ,
∫

Ω

us = 0 .

(2.6)

The last condition of (2.6) filters out additive constants and therefore is suitable for ensuring
uniqueness of the solutionus. In practice, any other condition with the same property could be
alternatively used.

The goal of this formulation is to obtain a problem with a more regular source, inorder to
eliminate the singularity of the solution atx0. Noting that the potentialu0 has a singularity at
x = x0 but is smooth forx 6= x0, we see that the Neumann datum in (2.6) is smooth and, moreover,
sinceσs vanishes inΩ0, we have thatσs∇u0 is bounded in the wholeΩ. Thus we are able to write
the following variational formulation of problem (2.6):

Findus ∈ H1(Ω) :














∫

Ω

σ∇us · ∇v = −
∫

Ω

σs∇u0 · ∇v −
∫

∂Ω

σ0∇u0 · n v ∀ v ∈ H1(Ω) ,

∫

Ω

us = 0 ,

An alternative approach which allows relaxing the assumption thatσ has to be constant in a
neighborhood ofx0 is the direct approachstudied in [19]. It is based on a direct ultra weak
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formulation of problem (2.2), valid for sufficiently smooth test functionsϕ:
∫

Ω

u div(σ∇ϕ) = −p · ∇ϕ(x0).

Under the assumption that the conductivityσ is sufficiently smooth in a neighborhood ofx0, it
was proved in [17] that the following problem has a unique solution: Findu ∈ Lp(Ω) such that















∫

Ω

u div(σ∇ϕ) = −p · ∇ϕ(x0) ∀ϕ ∈ X ,

∫

Ω

u = 0 ,

(2.7)

whereX is a convenient space of functionsϕ sufficiently smooth as to be able to evaluate the right-
hand side of the first equation above. We summarize these results in the following theorem. See [17]
for its proof and more precise details about this formulation.

Theorem 2.1
There exists a unique solution to (2.7), which belongs toLp(Ω) for 1 < p < 3/2 in 3D (or1 < p < 2
in 2D).

2.2. Discrete problem

In the remainder of this paper, we will focus on the 2D problem, for simplicity. However, the analysis
extends readily to 3D problems.

Also for simplicity we assume thatΩ is a polygon. We consider regular meshesTh of Ω (see, for
instance, [21]). As usual,h denotes the mesh size:h := maxT∈Th

hT , hT being the diameter ofT .
We consider the standard space of Lagrange finite elements of degree one:

Vh := {vh ∈ C(Ω) : vh|T ∈ P1 ∀T ∈ Th} .
The finite element approximation of the subtraction approach in [4] reads: findus,h ∈ Vh such that















∫

Ω

σ∇us,h · ∇vh = −
∫

Ω

σs∇u0 · ∇vh −
∫

∂Ω

σ0∇u0 · n vh ∀ vh ∈ Vh ,

∫

Ω

us,h = 0 ,

(2.8)

To prove the convergence ofus,h to us is straightforward (see [4]).
On the other hand, the finite element approximation of the direct approach reads: finduh ∈ Vh

such that














∫

Ω

σ∇uh · ∇vh = p · ∇(vh|T0
)(x0) ∀ vh ∈ Vh ,

∫

Ω

uh = 0 ,

(2.9)

whereT0 is the triangle inTh that containsx0. If there is more than one triangle containingx0,
anyone of them can be chosen asT0.

Remark 2.2.Since we are using piecewise linear elements,∇(vh|T0
) is a constant vector on the

wholeT0. Therefore, the solutionuh of problem (2.9) is insensitive to the specific location of the
pointx0 ∈ T0.

Under certain restrictive assumptions the following a priori error estimate has been proved in
[17]:

Theorem 2.3
Let Th be a quasiuniform family of subdivisions of a convex Lipschitz polygonΩ and assume that
σ is sufficiently smooth. Letu anduh be the respective solutions to problems (2.7) and (2.9). Then,
for h small enough and for somep < 2, there holds

‖u− uh‖0,p,Ω ≤ Ch2/p−1.
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The values ofp < 2 for which the above error estimate holds true depend on the geometry of the
domainΩ. In the numerical tests reported in the following section we have usedp = 1.25.

As stated above, the only aim of the last equation in problems (2.8), (2.9) is to have uniqueness
of solution for these problems. However, in practice it is more reasonable toconsider an alternative.
Since typically the measurements in EEG are electric potential differences with respect to one fixed
electrode, it is more realistic (and simpler) to use

u(xref ) = 0

as the condition to determine a unique solution of these problems, wherexref is the localization of
the fixed electrode.

We can improve the results obtained with the direct approach by using meshesproperly refined
aroundx0. For the direct approach, the following residual-type a posteriori error indicator has been
proposed in [17] for the finite element approximation error‖u− uh‖0,p,T .

For allT ∈ Th we define

εT,p :=



h2pT ‖div(σ∇uh)‖p0,p,T +
1

2

∑

ℓ∈E(T )∩Eh,i

|ℓ|p+1‖[[σ∇uh · n ]]‖p0,p,ℓ

+
∑

ℓ∈E(T )∩Eh,e

|ℓ|p+1‖σ∇uh · n‖p0,p,ℓ





1/p

,

whereEh,i is the set of all the inner edges of the triangulationTh, Eh,e is the set of boundary edges,
E(T ) is the set of the edges ofT and[[ g ]] denotes the jump ofg across an edge. We define the local
a posteriori error indicatorηT,p for all T ∈ Th as follows:

ηT,p :=

{

(

h2−p
0 + εpT,p

)1/p
if T = T0 ,

εT,p otherwise,
(2.10)

where we denote byT0 the triangle containing the pointx0 used in (2.9) and byh0 its diameter.
Next, we define the global error estimator from these indicators as follows:

ηp :=

(

∑

T∈Th

ηpT,p

)1/p

.

It has been proved in [17] that this estimator is reliable and efficient for appropriate values of
p < 2, under the assumption thatσ is sufficiently smooth.

The main goal of this paper is to solve an inverse problem corresponding toproblem (2.2). More
precisely, we consider this problem for a generic unknown dipole sourcep δx0

; notice that both the
polarizationp and the localizationx0 are unknown. To determine these two unknowns we have at
our disposal a set of measured values of the solution to problem (2.2) at a certain number of fixed
points on∂Ω. The aim of our inverse problem is to determinep andx0 such that the difference
between the values of the solution of problem (2.2) and the corresponding measured values achieves
a minimum in a proper way. The inverse problem is solved in an iterative fashion. At each step of
the iteration it is necessary to solve the forward problem (2.2) for tentative values of the unknowns
p andx0. Therefore, it is essential to have an efficient solver of this forward problem.

3. FORWARD PROBLEM

To prove existence and uniqueness of the solution, some regularity ofσ in a vicinity ofx0 has been
assumed. From a physiological point of view,σ is regular in each region of the head (scalp, skull
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and the different tissues of the brain) andx0 is located in the brain but typically close to the skull,
where the conductivity is around eighty times smaller than the conductivity in the brain. After some
experiments, we have seen that the subtraction approach is an excellent method when the dipole is
located far enough from the interfaces, but it has an oscillating behaviorwhen the dipole position lies
closer and closer to the interface between two regions with different conductivities. We will show
evidence of this fact below. We start describing the physical assumptionsand the geometry where we
will do the analysis. As can be seen in Figure1 (left), the domainΩ is a multilayer square centered
at (0, 0). The conductivityσ is assumed isotropic on each layer and given byσ|Ω1

= σ|Ω3
= 0.33

andσ|Ω2
= 0.0042. We will use these data in all the experiments.

Figure 1. DomainΩ.

We will report a comparison between point values of the solutions obtained by using the direct
approach with adaptivity (DAA) and the subtraction approach (SA) on uniformly refined meshes.
Figure1 (right) shows the coarsest used mesh in both cases. We have considered separately two
locations for the pointx0 ∈ Ω3, one far from the interface and the other one close. In both cases the
unit vectorp = (−0.2425, 0.9701) has been taken as polarization.

Figures2 and3 show the values of the solution at the point(−0.75, 1), on the boundary, computed
with SA and DAA. In Figure2 we have taken the localization pointx0 = (0.012634, −0.004012)
(far from the interface), whereas Figure3 corresponds tox0 = (0.012634, 0.86) (close to the
interface). We see from Figure2 that SA is stable in the case ofx0 far from an interface, whereas
DAA is a little bit oscillating at the coarser meshes, but stable in the finer. The situation is completely
different whenx0 is close to the interface, as can be seen from Figure3 which shows that SA has
a thoroughly unstable behavior on the coarser meshes, unlike DAA. Indeed, we observe that while
the error on the initial mesh (shown in Figure2, right) ranges between 1% and 5% for DAA, that
for SA is below 1% whenx0 is far from the interface (as in Figure2), but is larger than 400% when
x0 is close to it (as in Figure3).

Let us remark that the point on the boundary(−0.75, 1) has been chosen as for it the instability of
SA on coarse meshes is clearly seen. However, the behavior shown in Figures2 and3 is qualitatively
similar for all the points on the boundary. Thus, from our experimental information we may conclude
that SA is not robust whenx0 is located close to the interface. A theoretical analysis about this
statement can be found in [4, Lemma 3.10]. On the contrary, DAA is fairly stable when the dipole
position is in any region, near to or far from an interface. These conclusions suggest that DAA could
be a solution to fix this deficiency of SA. Anyway, we must not forget that whenx0 is an internal
point far from an interface, SA is a precise method, even better than DAA.
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Figure 2. Forward problem. Point values of the solutions obtained by using SA and DAA with a dipole
positionx0 = (0.012634, −0.004012) far from the interface.
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Figure 3. Forward problem. Point values of the solutions obtained by using SA and DAA with a dipole
positionx0 = (0.012634, 0.86) close to the interface.

4. INVERSE PROBLEM

In this section we discuss how to solve the inverse problem. Since we assume that the primary source
to be determined is a single dipole, in principle we need to find four parametersx = (x1, x2) and
q = (q1, q2) that minimize the objective function

φ(x, q) := ‖m(x, q)−mmeas‖22 , x ∈ Ω, q ∈ R
2.
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In the expression above

m(x, q) :=







u(P1)

...
u(Pn)






,

whereP1, ..., Pn ∈ ∂Ω are the observation points andu is the solution to problem (2.7) with
polarizationq and localizationx, namely,u ∈ Lp(Ω) is such that















∫

Ω

u div(σ∇ϕ) = −q · ∇ϕ(x) ∀ϕ ∈ X ,

∫

Ω

u = 0 .

(4.1)

In its turn,

mmeas :=







umeas(P1)

...
umeas(Pn)







is the vector of corresponding measured values at the same pointsP1, ..., Pn.
For eachx ∈ Ω we can determine the optimal polarizationp

x
as follows: if we writeq =

q1e1 + q2e2, wheree1 ande2 are the Cartesian unit vectors, then, being problem (4.1) linear with
respect to the polarization, we can decompose

m(x, q) = q1m(x, e1) + q2m(x, e2) = M(x)q,

whereM(x) is then× 2 matrix



m(x, e1) m(x, e2)



 .

Thus, given x ∈ Ω, to find p
x
= q ∈ R

2 that minimizes φ(x, q) = ‖M(x)q −mmeas‖22 is
equivalent to determining the solutionp

x
of the normal equations, namely, solving the2× 2 system

M t(x)M(x)p
x
= M t(x)mmeas . (4.2)

Therefore, the objective functionφ reduces to a functionψ only of x:

ψ(x) := ‖M(x)p
x
−mmeas‖22 , (4.3)

p
x

being the solution of (4.2). The next step is to choose an efficient optimization algorithm for this
function.

4.1. Minimization algorithm

To find the optimal dipole position, we need to choose an optimization method. With thisaim,
we start analyzing the objective functionψ to determine the possible existence of local minima.
With this purpose we have computed the objective function in a particular case. We have chosen
x0 = (0.012634, 0.8696) andp = (−0.2425, 0.9701) and computed very accurately “measured”
valuesmmeas = (umeas(P1), ..., u

meas(P30)) with P1, ..., P30 as shown in Figure4.
Then, we have evaluated the objective functionψ(x) with u computed by means of the direct

approach on the mesh shown in Figure5. Let us recall that this approach leads to constant values of
u on each triangle of the mesh and, consequently, also to constant values ofψ.

Figure5 shows the objective functionψ. It is possible to appreciate in the figure the existence
of local minima, although inΩ1. Because of physiological reasons, we are interested in solving the
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Figure 4. Observation points on the boundary.
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Figure 5. Objective function evaluated in the triangles of the mesh.

inverse problem forx in the most internal region of the geometry,Ω3 (which corresponds to the
brain), where in this case there are not local minima.

We have chosen the simulated annealing algorithm which is an excellent optimization method
to solve the inverse problem, specially in presence of local minima. This method isa probabilistic
algorithm based on an analogy to the thermodynamic process known as annealing, consisting of
the slow cooling of a substance from a liquid to a solid state. In our code, we use the MATLAB
commandsimulannealbnd, which corresponds to this method. Moreover, since in practice the
localizationx0 necessarily lies inΩ3 (brain), we constrain the optimization to values ofx in this
subdomain.
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Algorithm 1 Adaptive strategy of minimization

DATA: an initial coarse meshT 0
h and a randomly chosenx(0)

0 ;
1: for k = 0, 1, 2, ...

2: simulannealbnd(T k
h ,x(k)

0 ), OUTPUT: x(k+1)
0 ;

3: four steps of adaptive refinement process,OUTPUT: T k+1
h ;

4: until the stopping criterion is reached.

Table I. Algorithm of minimization.

4.2. Adaptive strategy of minimization

The main goal of this paper is to compare the performances of the direct approach and SA to solve
the inverse problem. In the case of the former, as described above, the objective function takes
constant values on each triangle of the mesh. Therefore, for an accurate determination ofx0, it is
necessary to use meshes properly refined in the vicinity of this (unknown)point. Moreover, the
solution to the underlying forward problem (4.1) presents a strong singularity atx, which makes
necessary to use meshes highly refined around this (varying) point. Givenx, such refined meshes
can be obtained by using the a posteriori error indicatorηT,p (cf. (2.10)). We have usedp = 1.25
in all the experiments to mark the elements that need to be refined. However, thelocation ofx
changes through the minimization process. Therefore, we need to derivea strategy that combines
both processes, the minimization and the mesh refinement.

With this aim, we designed an algorithm to solve the inverse problem that consistsin the
following: first, we use an initial coarse meshT 0

h and a randomly chosenx(0)
0 . Then, we enter in a

loop which has as stopping criterion that the objective function decreasesbelow a certain threshold.
Within this loop, the first step is to minimize the objective functionψ computed by direct approach,
by using the commandsimulannealbnd which receives as input:T 0

h andx(0)
0 . As output we

obtain a new approximation of the localization,x
(1)
0 , that we use to compute the corresponding

polarizationp(1)
x0

by solving (4.2). Next, we perform four steps of the adaptive refinement process
to solve problem (4.1) with right hand side−p

(1)
x0

· ∇ϕ(x(1)
0 ), the final meshT 1

h being the output of
this stage. Then, we perform a new minimization step by using nowx

(1)
0 andT 1

h instead ofx(0)
0 and

T 0
h . We continue with the process until the stopping criteria is reached. The algorithm is summarized

in TableI.
Let us recall that the accuracy of direct approach to solve the inverseproblem is limited by the

meshsize of the triangle containing the dipole locationx
(k+1)
0 . In fact, the values at the observation

points computed with direct approach only depend on which is the triangleT0 containingx(k+1)
0 ,

but not on the position ofx(k+1)
0 in T0 (see Remark2.2). Thus, in this case, we will take asx(k+1)

0

the barycenter of this triangleT0.

5. SIMULATION OF MEASUREMENTS

To solve the inverse problem, it is necessary to know the measured valuesmmeas =
(umeas(P1), ..., u

meas(Pn)) at the observation pointsP1, ..., Pn. In practice, these values are actually
measured through EEG. In the following section we will simulate this process in order to compare
the performances of DAA and SA. To do this, we need to have at our disposal accurately simulated
“measured” values. Since we do not have an analytical solution of the forward problem, we will use
numerical methods on extremely fine meshes to obtain these “measurements”. Inthis section we
will discuss which methods can be safely used to simulate these “measurements”, depending of the
localization ofx0. We will focus in determining the “measurements” in three cases: with the dipole
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position inΩ3, far, close and very close to the interface withΩ2. In all cases, we consider the thirty
observation points shown in Figure4.

In the case that the dipole position is a point far from an interface, we knowthat it is possible to
solve the forward problem very accurately with the SA using FEM on a veryfine mesh. However,
we need to determine the number of decimal digits that are reliable. To this end, we also computed
the “measured” values by using DAA and we compared both results.

First, we consider the dipole positionx0 = (0.15231, 0.24150) and polarization, p =
(−0.2425, 0.9701). For SA, we used a sequence of twelve successively refined uniformmeshes,
where the coarser one contains 362 d.o.f and the finer 2,923,631 d.o.f. InTableII we report values
of the solution at five of the observation points computed with SA on some of these meshes. We
observe that the computed values clearly converge for each observation point and that at least four
decimal digits are reliable. This table is a sample of what happens with any of thethirty points and
all the meshes.

Observation points

d.o.f. (-1, -0.75) (-1, 0.5) (-0.75, 1) (0, 1) (1, 0.25)
1,879 0.01274 0.68858 0.96247 1.17484 0.21499
4,180 0.01368 0.68837 0.96369 1.17566 0.21467
21,338 0.01455 0.68812 0.96463 1.17634 0.21444
110,528 0.01485 0.68807 0.96491 1.17659 0.21438
569,434 0.01494 0.68805 0.96499 1.17665 0.21436

1,290,999 0.01496 0.68805 0.96500 1.17667 0.21436

“Exact” values 0.0150 0.6881 0.9650 1.1767 0.2144

Table II. Convergence for SA whenx0 = (0.15231, 0.24150) is far from the interface.

Although in this case SA leads to a reliable determination of the “measurements”, we also
computed them with DAA. We report in Figure6 error curves (the Euclidean norm of the vector of
errors at all the observation points for both methods). To compute the plottederrors, we have taken
as “exact” values those obtained with SA on an extremely fine mesh.
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Figure 6. Error curves for SA and DAA whenx0 = (0.15231, 0.24150) is far from the interface.
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We can see from Figure6 that, in this case, SA exhibits a better performance than DAA, although
the latter converges to the same values. By repeating several times this experiment, we conclude
that such a behavior is typical for any dipole localizationx0 far from the interfaces. However, we
will show below that this is not the case whenx0 is close to an interface.

Secondly, we considered as dipole localizationx0 = (0.012634, 0.86). Notice that this point is at
a distance 0.01 from the interface. We repeated the procedure described above. We include in Table
III and Figure7 the corresponding information. We also report in TableIII the values computed
with DAA.

Observation points

Method d.o.f. (-1, -0.75) (-1, 0.5) (-0.75, 1) (0, 1) (1, 0.25)
SA 1,879 0.30696 0.69807 1.09337 1.80180 -0.00942

4,180 0.11748 0.85576 1.96375 5.46707 0.10636
21,338 0.18911 0.59929 1.11234 2.43831 0.02676
110,528 0.19220 0.59723 1.10051 2.38082 0.02512
569,434 0.19210 0.59738 1.10157 2.38411 0.02521

1,290,999 0.19210 0.59735 1.10156 2.38439 0.02521
DAA 1,637 0.19101 0.59649 1.08818 2.37749 0.02467

3,745 0.19124 0.59589 1.09465 2.38222 0.02491
25,141 0.19185 0.59711 1.10004 2.38397 0.02501
116,299 0.19204 0.59731 1.10126 2.38418 0.02519
156,175 0.19205 0.59731 1.10137 2.38419 0.02520

“Exact” values 0.1921 0.5974 1.1016 2.3843 0.0252

Table III. Convergence for SA and DAA whenx0 = (0.012634, 0.86) is close to the interface.
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Figure 7. Error curves for SA and DAA whenx0 = (0.012634, 0.86) is close to the interface.

It can be clearly seen from Figure7 and TableIII that SA yields very inaccurate computations in
this case for the coarser meshes. Indeed, the computed values are not close to the “exact” ones until
the number of degrees of freedom is larger than20, 000 which, for a two-dimensional test like this,
corresponds to a highly refined mesh. According to our experiments, it is typical of SA that it yields
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accurate results only when the mesh size is smaller than the distance fromx0 to the interface. Thus,
SA becomes fairly stable only for sufficiently fine meshes. Instead, DAA yields accurate values even
for the coarsest meshes. Moreover, the behavior of this approach looks much more stable.

Finally, we considered a dipole localization extremely close to the interface:x0 =
(0.012634, 0.8696), which is at a distance0.0004. Let us remark that it is not rare in EEG that the
primary current occurs practically on the interfaces, so that to considersuch anx0 makes perfect
sense. We repeated once more the same procedure and report the computed values in TableIV and
the corresponding error curves in Figure8.

It can be clearly seen that, in this case, SA fails completely to converge. Such a behavior agrees
with what was observed in the previous case: SA yields accurate results only if the meshsize is
smaller than the distance fromx0 to the interface. Notice that, in this case, we would need a mesh
with more that109 d.o.f. for attaining such a threshold (in spite of the two-dimensional character of
the test).

In order to have an alternative to double check the values computed with DAA, we have also
used in this case a hybrid approach: we have solved the problem with SA onthe meshes adaptively
created with the direct approach. Although the error indicator used to create these meshes depends
on the error of the direct approach, it leads to meshes highly refined in thevicinity of x0. Therefore,
the threshold of SA is attained at least in this vicinity. We labelled the results obtained with this
hybrid procedure as SAA (subtraction approach with adaptivity). We include these results in Table
IV and Figure8 in which a very accurate agreement between SAA and DAA can be seen. Let us
remark that this agreement supports the possibility of designing a proper error estimate for SA to
drive an adaptive scheme based on this method. Although we will not pursue this approach in this
paper, it will be the subject of some future research.

Observation points

Method d.o.f. (-1, -0.75) (-1, 0.5) (-0.75, 1) (0, 1) (1, 0.25)
SA 1,879 -2.70522 6.36421 23.29707 85.52184 2.36181

4,180 -0.04099 1.58093 4.23547 13.82857 0.33094
21,338 -3.04040 4.76241 20.30180 76.39359 2.16830
110,528 -0.61454 1.97822 6.84558 23.71393 0.61727
569,434 -0.36542 1.45897 4.82940 16.42804 0.41847

1,290,999 -0.06074 0.84485 2.41737 7.66346 0.17806
SAA 1,386 0.18985 0.60796 1.14112 2.65156 0.02691

4,510 0.19369 0.59594 1.10786 2.50092 0.02344
26,184 0.19663 0.59314 1.09734 2.44863 0.02228
105,992 0.19680 0.59334 1.09820 2.44730 0.02238
186,197 0.19681 0.59332 1.09826 2.44717 0.02238

DAA 1,386 0.19574 0.59222 1.08442 2.43143 0.02186
4,510 0.19575 0.59272 1.09336 2.44287 0.02240
26,184 0.19669 0.59306 1.09695 2.44579 0.02227
105,992 0.19681 0.59332 1.09810 2.44674 0.02237
186,197 0.19681 0.59333 1.09825 2.44685 0.02239

“Exact” values 0.1968 0.5933 1.0983 2.4472 0.0224

Table IV. Convergence for SA, SAA and DAA whenx0 = (0.012634, 0.8696) is very close to the interface.

6. NUMERICAL EXPERIMENTS

In this section, we focus on the inverse problem and compare the two strategies, SA and DAA. To
this end, we consider the same geometry and assess the performance of each strategy depending on
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Figure 8. Error curves for SA, SAA and DAA whenx0 = (0.012634, 0.8696) is very close to the interface.

how close the dipole location is to an interface. We will show that also for the inverse problem both
approaches behaves similarly when the dipole is located far enough from an interface, but that DAA
is clearly preferable when the dipole is close to an interface. Finally, we will discuss the robustness
of DAA with respect to measurements errors.

6.1. Test 1.

This experiment consists in reconstructing the position and the polarization ofthe dipole source
from boundary measurements by using the aforementioned methods when thedipole location inΩ3

is far from the interface. We considered in this testx0 = (0.15231, 0.24150) as dipole position and
the same polarization used in all the other cases:p = (−0.2425, 0.9701).

We define the percentage errorse(x) ande(p
x
) as follows:

e(x) := 100
‖x0 − x‖2
‖x0‖2

and e(p
x
) := 100

‖p− px‖2
‖p‖2

,

wherex andp
x

correspond to the approximations ofx0 andp obtained by solving the inverse
problem.

In TableV we report the localization and polarization obtained by solving the inverse problem by
using SA in four different uniform meshes as well as the correspondingpercentage errors. We also
include columns with the number of d.o.f., the value of the objective functionψ to be minimized
and the CPU time for each mesh. Finally, we include the exact valuesx0 andp in the last row of the
table.

On the other hand, in TableVI we present the same information for several iterations of DAA,
which allows us to see the evolution of this process. The behavior of each strategy can be better
appreciated in Figures9 and10, which show log-log plots of the errorse(x) ande(p

x
), respectively.

We observe from these two figures that both strategies lead to very accurate results, SA being more
stable than DAA, which presents a less monotonic behavior. On the other hand, it can be seen in
TablesV andVI that in this case SA is less expensive.

Figure11 shows some of the successively refined meshes created in the process driven by DAA.
Figure12shows two zooms around the singularity of the finer mesh in Figure11. The second figure
is a 200% zoom and the third one is an 800% zoom of the first one. In the lastfigure the evidence
of the process of search generated by DAA can be appreciated by the location of the points around
which the adaptive process leads to refinement.
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d.o.f. x e(x) p
x

e(p
x
) ψ(x) CPU time

362 (0.1524, 0.2509) 3.30 (-0.2437, 0.9784) 0.83 0.040 19.37
829 (0.1520, 0.2453) 1.33 (-0.2426, 0.9718) 0.17 0.012 37.78

1,879 (0.1524, 0.2431) 0.58 (-0.2426, 0.9710) 0.08 0.006 48.69
4,180 (0.1519, 0.2427) 0.45 (-0.2425, 0.9706) 0.04 0.003 185.13

Exact (0.1523, 0.2415) - (-0.2425, 0.9701) - - -

Table V. Test 1. Results obtained by solving the inverse problem with SA: localization, polarization,
percentage errors, objective function and CPU time (in seconds).

Iteration d.o.f. x e(x) p
x

e(p
x
) ψ(x) CPU time

1 362 (0.1623, 0.2513) 4.90 (-0.2318, 0.9780) 1.33 0.101 8.36
5 595 (0.1508, 0.2535) 4.25 (-0.2436, 0.9789) 0.88 0.048 71.86
10 1,847 (0.1509, 0.2442) 1.07 (-0.2418, 0.9711) 0.11 0.016 203.30
15 4,380 (0.1518, 0.2425) 0.39 (-0.2423, 0.9697) 0.05 0.008 520.08

Exact (0.1523, 0.2415) - (-0.2425, 0.9701) - - -

Table VI. Test 1. Results obtained by solving the inverse problem with DAA: localization, polarization,
percentage errors, objective function and CPU time (in seconds).
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Figure 9. Test 1. Percentage error curves for the localization x0 of the solution of the inverse problem by
using SA and DAA.

6.2. Test 2.

This experiment is totally similar to Test 1. The only difference is the position of the dipole source
in Ω3, which now is taken very close to the interface withΩ2. We used the same dipole position
as in Section4: x0 = (0.012634 , 0.8696). The polarization is the same as in the experiment above:
p = (−0.2425, 0.9701).

We report in TablesVII andVIII and Figures13 and14 the same information as in the previous
test. In this case, it can be clearly seen that the performance of DAA is significantly better than that
of SA. In fact, for the latter, no convergence can be appreciated for the polarizationp. In its turn
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Figure 10. Test 1. Percentage error curves for the polarization p of the solution of the inverse problem by
using SA and DAA.

iter=1, d.o.f.=362 iter=8, d.o.f.=956 iter=12, d.o.f.=1,935

Figure 11. Test 1. Meshes obtained in the process driven by DAA.

iter=12, d.o.f.=1,935

Figure 12. Test 1. Meshes obtained in the process driven by DAA. Successive zooms of the mesh for iter=13.

the locationx0 can be computed with a percentage error of around 1% on a rather coarse mesh,
although this cannot be improved with finer meshes. Instead DAA behaves ina much more stable
way and allows us to compute bothx0 andp with significantly smaller errors.

Figure 15 shows a zoom of the domain in which we report some successive positions and
polarizations obtained by means of DAA. We also include the exactx0 andp. The number nearby
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each point corresponds to the iteration number. Let us remark that the errors of all the localization
shown in this zoom are smaller than 2.5%.

As a consequence of these two tests we can assert that DAA is clearly preferable when the dipole
is located close to an interface. Moreover, in such a case SA even fails to converge. On the other
hand, when the dipole is far from an interface, although SA exhibits a betterperformance, DAA is
fairly stable and leads to competitive results.

d.o.f. x e(x) p
x

e(p
x
) ψ(x) CPU time

362 (0.0186, 0.8518) 2.16 (-0.2531, -0.0219) 99.21 0.0720 30.84
829 (0.0679, 0.8673) 6.36 (1.1304, 0.4758) 145.92 0.0236 25.20

1,879 (0.0138, 0.8632) 0.75 (-0.1624, 0.4771) 49.95 0.0092 54.62
4,180 (0.0114, 0.8633) 0.74 (-0.2537, -0.0720) 104.22 0.0104 104.04
9,417 (0.0096, 0.8645) 0.68 (-0.2310, 0.0169) 104.22 0.0040 479.41

Exact (0.0126, 0.8696) - (-0.2425, 0.9701) - - -

Table VII. Test 2. Results obtained by solving the inverse problem with SA: localization, polarization,
percentage errors, objective function and CPU time (in seconds).

Iter. d.o.f. x e(x) p
x

e(p
x
) ψ(x) CPU time

1 362 (0.0210, 0.7915) 9.03 (-0.2585, 1.0222) 5.44 0.213 8.52
5 521 (-0.0007, 0.8644) 1.64 (-0.2464, 0.9953) 2.55 0.081 53.77
10 1,013 (0.0132, 0.8676) 0.24 (-0.2430, 0.9817) 1.16 0.020 146.60

Exact (0.0126, 0.8696) - (-0.2425, 0.9701) - - -

Table VIII. Test 2. Results obtained by solving the inverse problem with DAA: localization, polarization,
percentage errors, objective function and CPU time (in seconds).
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Figure 13. Test 2. Percentage error curves for the localization x0 of the solution of the inverse problem by
using SA and DAA.
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Figure 14. Test 2. Percentage error curves for the polarization p of the solution of the inverse problem by
using SA and DAA.
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Figure 15. Test 2. Some of the successive positions and polarizations obtained by means of DAA.

6.3. Test 3.

We must have in mind that, in problems like this, the measurements are always affected by
errors. For this reason, it is important to analyze the robustness of the proposed method when
the data is subjected to noise. With this aim, we have repeated the experiment of Test 2, but with
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the measurements perturbed by uniformly distributed errors with a maximum size of 5% of the
maximum value of the data. This amounts to an average relative error of around 10%. We report the
obtained results in TableIX. We observe that these measurement errors produce percentage errors
of 1.83% and 3.67% in the determination of the localizationx0 and the polarizationp, respectively,
on the finer meshes obtained with DAA.

Iter. d.o.f. x p
x

e(x) e(p
x
)

1 362 (0.0210, 0.7915) (-0.2881, 0.9963) 9.03 5.26
5 511 (0.0242, 0.8538) (-0.2818, 0.9752) 2.25 3.96
10 1,222 (0.0225, 0.8572) (-0.2784, 0.9624) 1.83 3.67

Exact (0.0126, 0.8696) (-0.2425, 0.9701) - -

Table IX. Test 3. Results obtained by solving the inverse problem with DAA using perturbed measurements
with 5% maximum error size.

In order to study how the method depends on the size of the measurement errors, we have repeated
the previous experiment using different maximum error sizes: 1%, 5% and10% of the maximum
value of the measurements. We plot all the error curves forx0 on Figure16 and forp on Figure
17. To allow for comparison, the figures also include the data “0%” corresponding to the problem
without measurement errors. Finally, TableX shows the percentage error in the determination ofx0

andp on the finest mesh for the different maximum error sizes.
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Figure 16. Test 3. Comparison between percentage error curves for the localizationx0 obtained by solving
the inverse problem with DAA using perturbed measurements with different maximum error size.

Measurement errors 0% 1% 5% 10%
x0 error 0.24% 0.74% 1.83% 8.26%
p error 1.16% 1.19% 3.67% 5.28%

Table X. Test 3. Percentage errors in the determination ofx0 andp on the finest mesh computed with DAA
using perturbed measurements with different maximum errorsize.
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Figure 17. Test 3. Comparison between percentage error curves for the polarizationp obtained by solving
the inverse problem with DAA using perturbed measurements with different maximum error sizes.

7. CONCLUSIONS

We have analyzed two approximation methods for the inverse problem of electroencephalography:
subtraction approach (SA) on uniform meshes and direct approach withadaptivity (DAA). The
study was done in a 2D framework, but the conclusions remain valid for 3D problems as well.

We observed in the forward problem that both strategies are stable when the dipole position is
sufficiently far from an interface. However, when the dipole is close to aninterface, SA may yield
unstable solutions. Instead, DAA does not exhibit such a behavior. Therefore, we presume that the
latter is a better candidate to be used for solving the inverse problem.

From the experimental evidence we conclude that both methods yield accurate results for the
inverse problem when the dipole is far from the interfaces. Instead, when the dipole is close to an
interface, SA leads to reasonable results with respect to the dipole position only for sufficiently fine
meshes, whereas in all the numerical experiments the approximation of the polarization is quite
inaccurate. In the case of DAA the approximation of both, location and polarization are thoroughly
satisfactory. Finally, our experimental results allow us to conclude that DAAis a robust strategy
with respect to measurement errors to solve the inverse problem, too.

The main advantage of DAA with respect to SA is the fact that it uses adaptively created meshes
that are appropriate to deal with the singular character of the solution. Ourpreliminary experiments
seem to show that adaptively refined meshes could be useful for SA too.This fact opens the
possibility of designing an error indicator for SA and creating an adaptivescheme based on this
approach.
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