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SUMMARY

The goal of this paper is to compare two computational models the inverse problem of
electroencephalography: the localization of brain afgtifiom measurements of the electric potential on
the surface of the head. The source current is modeled asoe dinose localization and polarization
has to be determined. Two methods are considered for salwengorresponding forward problems: the so
calledsubtraction approacknddirect approachThe former is based on subtracting a fundamental solution,
which has the same singular character of the actual solwimhsolving computationally the resulting non-
singular problem. Instead, the latter consists in solviimgadly the problem with singular data by means
of an adaptive process based on an a posteriori error estimdtich allows creating meshes appropriately
refined around the singularity. A set of experimental testsbth, the forward and the inverse problems,
are reported. The main conclusion of these tests is thatithetcapproach combined with adaptivity is
preferable when the localization of the dipole is close taraerface between brain tissues with different
conductivities.

KEY WORDS: electroencephalography, dipole source, edstdtics, inverse problem.

1. INTRODUCTION

It is common practice in cognitive research to reconstruct currentesun the human brain by
means of their electric potentials, measured with electrodes which are fixbe soalp (EEG)]].

Electromagnetic cerebral activity is due to the motion of ions in the active regibrthe
brain. This movement generates the so cailedressed currenfor primary current) that in turn
creates ohmic currents in the surrounding environment cadfienin currents We are interested in
determining the impressed current.

The reconstruction of the position and of some physical characteristibe afirrent density that
gives rise to the EEG measurements is called the inverse problem. For aatageconstruction
of the primary current it is important to be able to model realistically tissue aivity
inhomogeneities.

Since the frequency spectrum for electrophysiological signals in EEGVHEEG is below 1,000
Hz, often between 0.1 and 100 Hz, most theoretical works on biomedigdicaiions such as
[2, 3, 4, 5] use thestatic approximation of the Maxwell equaticinsvhich the time variation of both
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electric and magnetic fields are disregarded. The static model is not theassiple simplification
of the Maxwell equations. Other models that can be taken into accounteaeéetitro-quasistatic
mode] in which the time variation of the magnetic induction is not considered ancthdgneto-
guasistatic modebr eddy current equationsvhich are derived from the Maxwell equations by
neglecting the time derivative of the electric field. It is also possible to studgrtitdem using the
full system of MaxwellSome references on these approacheséig g, 9].

We focus on the static model which leads to the electrostatics problem. We eotwgidstrategies
to approximate the potential for the electrostatics problem by using FEM. ®Otleem is the
“subtraction approach” which has been studiedli@, {, 11, 12, 13, 14, 15], for example. In this
formulation it is necessary to assume that the dipole is located in a region witmageoeous
conductivity. Then, it is possible to consider a more regular unknowmeha the difference
between the total potential and the fundamental solution with constant dogyevhich allows
us to overcome the difficulties arising from the singularity of the source.

The other method is a direct approach in which the unknown is the total pdtamtidhe dipole
source is incorporated directly in the formulation. These two approacsisden compared inf)
in terms of computational complexity and accuracy.

More recently the direct approach was further analyzedlirj vhere an a posteriori error
estimate and an adaptive scheme which allows improving the efficiency of fhisaagh were also
introduced.

In this paper we report some numerical computations in order to compare dhedtiods, the
subtraction approach and the direct approach with adaptivity. We useftiiehe approximation of
the inverse problem when the conductivity has a jump across the intedgagedn different tissues
(we recall that this is the case in the real physiological framework). Wiy stuparticular the case
of a dipolar source located close to the interface between two regions withedif conductivities
(which again is physiologically realistic).

The paper is organized as follows: in Sectibwe introduce the methods and the assumptions to
obtain well-posed problems, we establish some a priori error estimatesrally, fve introduce the
a posteriori error estimator for the direct approach. In Se@jove analyze the performances of the
subtraction method and the direct approach with adaptivity for the camelapg forward problem.
In Section4 we explain in detail how we solve the inverse problem. In Sediiare focus on how
we generate reliable measurements for the simulations. In Sé&cierreport numerical results for
the inverse problem and, finally, in Secti@rmve draw some conclusions.

2. TWO APPROXIMATION METHODS

We start introducing the equations.

2.1. Continuous problem

In almost all the studies concerning the neural generation of electrotadieséds the static
approximation of Maxwell equations is considered:

divD =p,

curl E =0,
(2.2)
curl H = J,

divB =0,

where E and D are the electric field and electric displacement, respectiyelye electric charge
density andJ the electric current density. BJ# and B we denote the magnetic field and the
magnetic induction, respectively. A detailed justification of the choice of the steodel in this
context can be found for instance in Plonsey & Heppiél.[
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For biological tissues, the linear constitutive equatidhs- e E and B = uH can be assumed
(see, for instance8[ 7]), wheree and . correspond to the electric permittivity and the magnetic
permeability, respectively.

From the second equation d.(), we conclude that there exists a scalar potentialich that
E = —Vu. From Ohm law, the total current densifyis the sum of the impressed current plus the
return currents

J=J,+ocE=J,-0Vu,

whereo is the conductivity, which is a uniformly positive definite matrix with boundediestr
From the third equation ir2(1) it follows that

0=divd =div(J, —oVu).
Henceu is solution of the equation
div(eVu) =divdJ,.

We consider a domaift, open, connected and bounded, with Lipschitz continuous bouiadary
included inR?, whered = 2 or d = 3 (2 represents the human head fior= 3 or a two-dimensional
section ford = 2). We definen to be the outer unit normal vector @f). We assume thaf,
is supported iM2. SinceJ|g -n = J|Rd\§ -n = 0 on the interfac&®Q andJ, - n =0 on 99, it
follows that(eVu) - n = 0 on Q. Then, we obtain this problem:

div(o Vu) = divJ, in €,
(oVu) - n=0 onof .

Let us assume that there is a small activated region centered at a:paind that the observation
points are far from it. In this case the primary curréitis typically modeled as a dipolgd,,
whered,, is the Dirac delta distribution centeredaat (see #]). So, in the following, we consider
the electrostatic problem above with a dipole source term:

{&WUVM:dW@%J in €, (2.2)

(oVu) - n=0 onof?,

wherex, is an inner point of2, andp # 0 is the polarization vector. Inlp] the existence and
uniqueness of solution € L?(Q)), 1 < p < 3/2, of this problem (ford = 3) has been studied under
the assumption of some additional regularityoiin a vicinity of z,. We recall that fop > 1,

U@%%HQ%R:AUW<@}

is a vector space endowed with the norm

1/p
0,p.Q = </ v|p> .
Q
We will give more details below.

The singularity of the dipole source can be treated by using the so-saltddction approachin
what follows we explain this technique. For using it, we need to assume thatekists a nonempty
open subdomaify, C 2 around the source positiaty, with constant conductivityry (in general,
a matrix). The conductivity is then split into two parts,

[[v

o=o0y)+o0,, (2.3)

so thato is constant over the whole domaihand o, vanishes in the subdomafp,. The total
potentialu is also split into two parts:
U = ug + us, (2.4)
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whereu, satisfies

div(eoVug) = div(p 0z, )- (2.5)
An analytic formula forug in the case of a homogeneous conductivityis known (seeZ(]) :
plog (@ — o) if d =2
2my/detoy(z — xo)toy (x — x0) -
uo(@) = ployt(xz —xg)
0 0 if d=3.

3/2°

Am/detoy ((x — xo)toy(z — o))
The above expression simplifies as follows when the medium is isotropiafj.es,o0 I with o
a constant) :
e —
P@mzo) gy
27(‘0'0‘% — £Co|2
’LL()(CL’) = .
p@ o) gy
4’]’(’0’0‘$—$0|37 '

Replacing 2.3) and @.4) in (2.2) and using that,, satisfies 2.5), we obtain
div[(oo + 05)V(uo + us)] = div(pda,) = div(eoVuo),
and hence
div(eVu,) = div[(o¢ + 0,)Vus] = —div(osVuy) .
On the other hand, since
0= (oVu) -n=(aV(u +us)) -n ondQ,
we derive the Neumann boundary condition
(oVus) -mn=—(oVug)-n 0onos.
In conclusiony, solves the boundary value problem

div(e Vus) = —div(osVug) inQ,
(oVus) -n=—(oVug) - n onom, (2.6)

/uszo.
Q

The last condition of Z.6) filters out additive constants and therefore is suitable for ensuring
unigueness of the solutiom,. In practice, any other condition with the same property could be
alternatively used.

The goal of this formulation is to obtain a problem with a more regular sourcerdar to
eliminate the singularity of the solution af,. Noting that the potential,, has a singularity at
x = x but is smooth fore # x(, we see that the Neumann datumang] is smooth and, moreover,
sinceo , vanishes irf)y, we have that,Vug is bounded in the whol®. Thus we are able to write
the following variational formulation of problen2 (6):

Findu, € H(Q) :

/UVUS~V11:7/0'SVUO~V117/ ooVug-nv Yve HY(Q),
Q Q a0

/uS:O,
Q

An alternative approach which allows relaxing the assumption dhbgs to be constant in a
neighborhood ofz, is the direct approachstudied in [L9]. It is based on a direct ultra weak
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formulation of problemZ.2), valid for sufficiently smooth test functions

/Qu div(eVp) = —p - V(xg).

Under the assumption that the conductiwtyis sufficiently smooth in a neighborhood ®§, it
was proved in17] that the following problem has a unique solution: Find L?(2) such that

/ u div(e V) = —p - Vo(x) Voe X,
Q

/uzO,
Q

whereX is a convenient space of functiopssufficiently smooth as to be able to evaluate the right-
hand side of the first equation above. We summarize these results in tharigllineorem. Seel[7]
for its proof and more precise details about this formulation.

Theorem 2.1
There exists a unique solution @.7), which belongs td.?(Q2) for1 <p < 3/2in3D (orl < p < 2
in 2D).

2.7)

2.2. Discrete problem

In the remainder of this paper, we will focus on the 2D problem, for simplicibyveler, the analysis
extends readily to 3D problems.

Also for simplicity we assume thét is a polygon. We consider regular meshgof Q) (see, for
instance, 21]). As usual,h denotes the mesh size:= maxrc7, hr, hr being the diameter df'.
We consider the standard space of Lagrange finite elements of degree on

Vi = {Uh S C(Q) : 'Uh‘T ePL VT € 771}
The finite element approximation of the subtraction approachlirepds: findu, ;, € V3, such that

/ oVug - Vo, = f/ osVug - Vuy f/ ooVug -nv, Yo, € Vy,

Q Q o0 (2.8)
/ Us,h = 0,

Q

To prove the convergence of ;, to u; is straightforward (seel]).
On the other hand, the finite element approximation of the direct approadi:réndu;, € V},
such that

/ oVuy, - Vo, =p - V(vp|1,)(0) Yoy € Vi,
Q

/uh:Oa
Q

whereTj is the triangle in7;, that containse. If there is more than one triangle containizg,
anyone of them can be chosenZas

Remark 2.2.Since we are using piecewise linear elemeRt&y;, |7, ) iS a constant vector on the
whole Ty. Therefore, the solution,, of problem @.9) is insensitive to the specific location of the
pointz, € Tp.

Under certain restrictive assumptions the following a priori error estimatebban proved in
[17):
Theorem 2.3
Let 7;, be a quasiuniform family of subdivisions of a convex Lipschitz poly@oand assume that

o is sufficiently smooth. Let, andu;, be the respective solutions to problers/f and @.9). Then,
for h small enough and for some< 2, there holds

(2.9)

lu = unllop.o < CH2/PL.
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The values op < 2 for which the above error estimate holds true depend on the geometry of the
domainQ. In the numerical tests reported in the following section we have pised.25.

As stated above, the only aim of the last equation in problen8}, (2.9) is to have uniqueness
of solution for these problems. However, in practice it is more reasonab@mgider an alternative.
Since typically the measurements in EEG are electric potential differencesasfibat to one fixed
electrode, it is more realistic (and simpler) to use

w(rer) =0

as the condition to determine a unique solution of these problems, whegrés the localization of
the fixed electrode.

We can improve the results obtained with the direct approach by using masiesly refined
aroundz,. For the direct approach, the following residual-type a posteriorr @mdicator has been
proposed in17] for the finite element approximation errpt. — w0 p.7-

For allT € T; we define

1
2 .
ery = | by | div(eVun)llg - + 5 S P leVus - nllf,,
LEE(T)NER 4
1/p

+ > P eVun -nlh,, ,
LEE(T)NER e

where&}, ; is the set of all the inner edges of the triangulation&;, . is the set of boundary edges,
E(T) is the set of the edges @f and[¢] denotes the jump aof across an edge. We define the local
a posteriori error indicatayr, for all 7' € 7, as follows:

2—p p \/P . _
77T,p = (hO + ST,p) |f T = TO s (210)
ETp otherwise
where we denote by the triangle containing the poiaf, used in 2.9) and byh, its diameter.
Next, we define the global error estimator from these indicators as follows:

1/p

TETh

It has been proved inl[/] that this estimator is reliable and efficient for appropriate values of
p < 2, under the assumption thatis sufficiently smooth.

The main goal of this paper is to solve an inverse problem correspondprglitem @.2). More
precisely, we consider this problem for a generic unknown dipole squig, ; notice that both the
polarizationp and the localizatiornz, are unknown. To determine these two unknowns we have at
our disposal a set of measured values of the solution to proldletnat a certain number of fixed
points ondf2. The aim of our inverse problem is to determipend x, such that the difference
between the values of the solution of probletr?f and the corresponding measured values achieves
a minimum in a proper way. The inverse problem is solved in an iterative fashiceach step of
the iteration it is necessary to solve the forward probl@rg) (for tentative values of the unknowns
p andx,. Therefore, it is essential to have an efficient solver of this forwantlpm.

3. FORWARD PROBLEM

To prove existence and uniqueness of the solution, some regula&tynad vicinity of zy has been
assumed. From a physiological point of viewjs regular in each region of the head (scalp, skull
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and the different tissues of the brain) anglis located in the brain but typically close to the skull,
where the conductivity is around eighty times smaller than the conductivity irrétie. A\fter some
experiments, we have seen that the subtraction approach is an excelibotwhen the dipole is
located far enough from the interfaces, but it has an oscillating behatiem the dipole position lies
closer and closer to the interface between two regions with differentuctinidies. We will show
evidence of this fact below. We start describing the physical assumptimhthe geometry where we
will do the analysis. As can be seen in Figur@eft), the domain? is a multilayer square centered
at (0,0). The conductivityo is assumed isotropic on each layer and giverwhy, = o|q, = 0.33
ando|q, = 0.0042. We will use these data in all the experiments.

X9 A
1.0
Q
0.92\‘J ‘Ll
\{| '
/|
0.87 Qs 0,
'
/ '\\1.0 T
0.87 0.92

Figure 1. Domairn).

We will report a comparison between point values of the solutions obtaipedihg the direct
approach with adaptivity (DAA) and the subtraction approach (SA) aformly refined meshes.
Figure 1 (right) shows the coarsest used mesh in both cases. We have codsidperately two
locations for the poink, € Q3, one far from the interface and the other one close. In both cases the
unit vectorp = (—0.2425, 0.9701) has been taken as polarization.

Figures2 and3 show the values of the solution at the pqgir0.75, 1), on the boundary, computed
with SA and DAA. In Figure2 we have taken the localization poim = (0.012634, —0.004012)

(far from the interface), whereas FiguBecorresponds tacy = (0.012634, 0.86) (close to the
interface). We see from Figutzthat SA is stable in the case of, far from an interface, whereas
DAA is a little bit oscillating at the coarser meshes, but stable in the finer. Tragisitus completely
different whenx, is close to the interface, as can be seen from FiGusbich shows that SA has
a thoroughly unstable behavior on the coarser meshes, unlike DAAedinge observe that while
the error on the initial mesh (shown in Figuzeright) ranges between 1% and 5% for DAA, that
for SA is below 1% wherx, is far from the interface (as in Figug, but is larger than 400% when
xg is close to it (as in Figura).

Let us remark that the point on the boundé&n0.75, 1) has been chosen as for it the instability of
SA on coarse meshes is clearly seen. However, the behavior showmine$d@nd3 is qualitatively
similar for all the points on the boundary. Thus, from our experimentatimétion we may conclude
that SA is not robust whem is located close to the interface. A theoretical analysis about this
statement can be found id,[Lemma 3.10]. On the contrary, DAA is fairly stable when the dipole
position is in any region, near to or far from an interface. These cowdsisuggest that DAA could
be a solution to fix this deficiency of SA. Anyway, we must not forget thla¢m, is an internal
point far from an interface, SA is a precise method, even better than DAA.
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-e-DAA
0.98f —+—SA

0.96r 7
0.94r 7
$ 0.92r i

0.9¢ : i

point valu

0.88f B 7
0.86r
0.84f 1
0.82f 1

0.8 ‘3 ‘4 5

10> 10 10 10
d.o.f.

Figure 2. Forward problem. Point values of the solutionsimieid by using SA and DAA with a dipole
positionzy = (0.012634, —0.004012) far from the interface.

-e-DAA

point value

P T BN Y S SN T

d.o.f.

Figure 3. Forward problem. Point values of the solutionsimied by using SA and DAA with a dipole
positionzy = (0.012634, 0.86) close to the interface.

4. INVERSE PROBLEM
In this section we discuss how to solve the inverse problem. Since we asirtiesthrimary source

to be determined is a single dipole, in principle we need to find four parameterée,, z2) and
q = (q1, ¢2) that minimize the objective function

¢z, q) = |lm(z, q) —m™*3, xeQ qeR%
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In the expression above
U(Pl)
m(a:, q) = 9
u(Py)

where Py, ..., P, € 902 are the observation points andis the solution to problem2(7) with
polarizationg and localizationz, namely,u € LP(£2) is such that

/ udiv(e Vy) = —q - Vo(x) Voe X,
Q

/u:O.
Q

(4.1)

Inits turn,
umeas (P1 )

meas ,__

umeas (Pn)

is the vector of corresponding measured values at the same pints P,.

For eachz € Q2 we can determine the optimal polarizatigr, as follows: if we writeq =
qie1 + gze2, Wheree; ande, are the Cartesian unit vectors, then, being problér) (inear with
respect to the polarization, we can decompose

m(:c, Q) = qlm(w7 81) + qu(xveQ) = M(:‘C)qv

whereM (x) is then x 2 matrix
m(x,e1) m(x,es)

Thus, givenz € Q, to find p, = g € R? that minimizes ¢(z,q) = ||M(xz)q — m™*||3 is
equivalent to determining the soluti@n, of the normal equations, namely, solving the 2 system

M'(x)M (z)p, = M"(x)m™ (4.2)
Therefore, the objective functionreduces to a functiott only of x:

(@) = | M (x)p, — m™*3, (4.3)

p,, being the solution 0f4.2). The next step is to choose an efficient optimization algorithm for this
function.

4.1. Minimization algorithm

To find the optimal dipole position, we need to choose an optimization method. Withithjs
we start analyzing the objective functiento determine the possible existence of local minima.
With this purpose we have computed the objective function in a particular Wéséave chosen
xo = (0.012634, 0.8696) and p = (—0.2425, 0.9701) and computed very accurately “measured”
valuesm™es = (y™3(Py), ..., u™S(P3g)) with Py, ..., P3g as shown in Figuré.

Then, we have evaluated the objective functigfx) with « computed by means of the direct
approach on the mesh shown in Figéré.et us recall that this approach leads to constant values of
u on each triangle of the mesh and, consequently, also to constant valjies of

Figure5 shows the objective function. It is possible to appreciate in the figure the existence
of local minima, although i2;. Because of physiological reasons, we are interested in solving the
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Figure 4. Observation points on the boundary.
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inverse problem fore in the most internal region of the geometf}s (which corresponds to the

brain), where in this case there are not local minima.

We have chosen the simulated annealing algorithm which is an excellent optiminagitod
to solve the inverse problem, specially in presence of local minima. This metlaogrababilistic
algorithm based on an analogy to the thermodynamic process known asdiagneonsisting of
the slow cooling of a substance from a liquid to a solid state. In our code sev¢he MATLAB

commandsi nmul anneal bnd, which corresponds to this method. Moreover, since in practice the

localizationzy necessarily lies 23 (brain), we constrain the optimization to valuesaofn this

subdomain.
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Algorithm 1 Adaptive strategy of minimization

DATA: an initial coarse mesff and a randomly chosewf)o);
1:for k=0,1,2,...

2:  si mul anneal bnd(7*,2{"), OUTPUT: z{**";

3: four steps of adaptive refinement proc€ds,TPUT: 7;1’““;
4: until the stopping criterion isreached.

Table I. Algorithm of minimization.

4.2. Adaptive strategy of minimization

The main goal of this paper is to compare the performances of the diratizegbpand SA to solve
the inverse problem. In the case of the former, as described abovebjtive function takes
constant values on each triangle of the mesh. Therefore, for anadealatermination ok, it is
necessary to use meshes properly refined in the vicinity of this (unknpwin). Moreover, the
solution to the underlying forward problem.() presents a strong singularity @&t which makes
necessary to use meshes highly refined around this (varying) poirgn@jsuch refined meshes
can be obtained by using the a posteriori error indicaioy (cf. (2.10). We have useg = 1.25

in all the experiments to mark the elements that need to be refined. Howevéoc#tien of
changes through the minimization process. Therefore, we need to desivategy that combines
both processes, the minimization and the mesh refinement.

With this aim, we designed an algorithm to solve the inverse problem that comnsigie
following: first, we use an initial coarse megJ} and a randomly choserﬁo). Then, we enterin a
loop which has as stopping criterion that the objective function decréat®s a certain threshold.
Within this loop, the first step is to minimize the objective functipnomputed by direct approach,
by using the commandi nmul anneal bnd which receives as inpuf; anda;éo). As output we

obtain a new approximation of the Iocalizatioqgl), that we use to compute the corresponding
polarizationp,ilo) by solving @.2). Next, we perform four steps of the adaptive refinement process
to solve problem4.1) with right hand sid&pgo) . w(mg”), the final mesHv,! being the output of

this stage. Then, we perform a new minimization step by usingaidhand7;! instead ot|” and
T.. We continue with the process until the stopping criteria is reached. Thetafgds summarized
in Tablel.

Let us recall that the accuracy of direct approach to solve the inpeoddem is limited by the

meshsize of the triangle containing the dipole Iocaﬂ'aé i) In fact, the values at the observation

points computed with direct approach only depend on which is the trimgdmntaining:cék“),

but not on the position ot in T, (see Remari.2). Thus, in this case, we will take as" "
the barycenter of this trianglg,.

5. SIMULATION OF MEASUREMENTS

To solve the inverse problem, it is necessary to know the measured vahess =
(u™es(Py), ..., u™**s(P,)) at the observation poin3, ..., P,,. In practice, these values are actually
measured through EEG. In the following section we will simulate this processler to compare

the performances of DAA and SA. To do this, we need to have at oursh$pocurately simulated
“measured” values. Since we do not have an analytical solution of thefdrproblem, we will use
numerical methods on extremely fine meshes to obtain these “measuremeritss. $action we

will discuss which methods can be safely used to simulate these “measurendeptexiding of the
localization ofxy. We will focus in determining the “measurements” in three cases: with the dipole
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position inQ23, far, close and very close to the interface with In all cases, we consider the thirty
observation points shown in Figude

In the case that the dipole position is a point far from an interface, we khatit is possible to
solve the forward problem very accurately with the SA using FEM on a fieeymesh. However,
we need to determine the number of decimal digits that are reliable. To this eralsavcomputed
the “measured” values by using DAA and we compared both results.

First, we consider the dipole positior, = (0.15231, 0.24150) and polarization, p =
(—0.2425, 0.9701). For SA, we used a sequence of twelve successively refined unifeshes,
where the coarser one contains 362 d.o.f and the finer 2,923,631 d.Gablell we report values
of the solution at five of the observation points computed with SA on some o theshes. We
observe that the computed values clearly converge for each obsarpatit and that at least four
decimal digits are reliable. This table is a sample of what happens with any tfittyepoints and
all the meshes.

[ | Observation points I

dodf. (-1,-0.75)] (-1,0.5)| (-0.75,1)] (0,1) | (1,0.25)
1,879 0.01274 | 0.68858| 0.96247 | 1.17484| 0.21499
4,180 0.01368 | 0.68837| 0.96369 | 1.17566| 0.21467

21,338 0.01455 | 0.68812| 0.96463 | 1.17634| 0.21444
110,528 0.01485 | 0.68807| 0.96491 | 1.17659| 0.21438
569,434 0.01494 | 0.68805| 0.96499 | 1.17665| 0.21436

1,290,999 0.01496 | 0.68805| 0.96500 | 1.17667| 0.21436

[ “Exact” values| 0.0150 | 0.6881 | 0.9650 | 1.1767 | 0.2144 |

Table II. Convergence for SA whety = (0.15231, 0.24150) is far from the interface.

Although in this case SA leads to a reliable determination of the “measuremergsa|se
computed them with DAA. We report in Figufeerror curves (the Euclidean norm of the vector of
errors at all the observation points for both methods). To compute the péotiad, we have taken
as “exact” values those obtained with SA on an extremely fine mesh.

——DAA
~e-SA
107t E
2107 :
()]
107 1
-4
10 L L
10> 10° 10* 10°
d.o.f.

Figure 6. Error curves for SA and DAA whety = (0.15231, 0.24150) is far from the interface.
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We can see from Figur@that, in this case, SA exhibits a better performance than DAA, although
the latter converges to the same values. By repeating several times thisrexypewe conclude
that such a behavior is typical for any dipole localizatignfar from the interfaces. However, we
will show below that this is not the case whegis close to an interface.

Secondly, we considered as dipole localizatign= (0.012634, 0.86). Notice that this point is at
a distance 0.01 from the interface. We repeated the procedure désaiitree. We include in Table
[l and Figure? the corresponding information. We also report in Talblethe values computed

with DAA.

I

Observation points

Method| d.of. | (-1,-0.75)] (-1,0.5)] (-0.75,1)] (0,1) | (1,0.25)
SA 1,879 | 0.30696 | 0.69807| 1.09337 | 1.80180] -0.00942
4,180 | 0.11748 | 0.85576| 1.96375 | 5.46707| 0.10636
21,338 | 0.18911 | 0.59929| 1.11234 | 2.43831| 0.02676
110,528 | 0.19220 | 0.59723| 1.10051 | 2.38082| 0.02512
569,434 | 0.19210 | 0.59738| 1.10157 | 2.38411| 0.02521
1,290,999 0.19210 | 0.59735| 1.10156 | 2.38439| 0.02521
DAA 1,637 | 0.19101 | 0.59649| 1.08818 | 2.37749| 0.02467
3,745 | 0.19124 | 0.59589| 1.09465 | 2.38222| 0.02491
25,141 | 0.19185 | 0.59711| 1.10004 | 2.38397| 0.02501
116,299 | 0.19204 | 0.59731| 1.10126 | 2.38418| 0.02519
156,175 | 0.19205 | 0.59731| 1.10137 | 2.38419| 0.02520

[ “Exact’values | 0.1921 [ 0.5974 | 1.1016 | 2.3843 [ 0.0252 |

Table Ill. Convergence for SA and DAA whety = (0.012634, 0.86) is close to the interface.
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Figure 7. Error curves for SA and DAA whexy = (0.012634, 0.86) is close to the interface.

It can be clearly seen from Figureand Tabldll that SA yields very inaccurate computations in
this case for the coarser meshes. Indeed, the computed values dasadbdhe “exact” ones until
the number of degrees of freedom is larger th&r000 which, for a two-dimensional test like this,
corresponds to a highly refined mesh. According to our experiments, fiiatyof SA that it yields
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accurate results only when the mesh size is smaller than the distance fitorthe interface. Thus,
SA becomes fairly stable only for sufficiently fine meshes. Instead, DA y&ccurate values even
for the coarsest meshes. Moreover, the behavior of this approdchimech more stable.

Finally, we considered a dipole localization extremely close to the interfage=
(0.012634, 0.8696), which is at a distanc@.0004. Let us remark that it is not rare in EEG that the
primary current occurs practically on the interfaces, so that to considdr anxz, makes perfect
sense. We repeated once more the same procedure and report théecbwajues in Tablé/ and
the corresponding error curves in Figie

It can be clearly seen that, in this case, SA fails completely to convergh.&biehavior agrees
with what was observed in the previous case: SA yields accurate resljtsf ohe meshsize is
smaller than the distance from, to the interface. Notice that, in this case, we would need a mesh
with more thatl0° d.o.f. for attaining such a threshold (in spite of the two-dimensional charafcte
the test).

In order to have an alternative to double check the values computed with &Aave also
used in this case a hybrid approach: we have solved the problem with 8% oneshes adaptively
created with the direct approach. Although the error indicator used &bectikese meshes depends
on the error of the direct approach, it leads to meshes highly refined wicinéy of x,. Therefore,
the threshold of SA is attained at least in this vicinity. We labelled the results eltaiith this
hybrid procedure as SAA (subtraction approach with adaptivity). Wedecthese results in Table
IV and Figure8 in which a very accurate agreement between SAA and DAA can be seensL
remark that this agreement supports the possibility of designing a praperestimate for SA to
drive an adaptive scheme based on this method. Although we will noteth®iapproach in this
paper, it will be the subject of some future research.

I |

Observation points |

Method| d.o.f | (-1,-0.75)| (-1,0.5)] (-0.75,1)| (0,1) | (1,0.25)
SA 1,879 | -2.70522 | 6.36421| 23.29707| 85.52184| 2.36181
4,180 | -0.04099 | 1.58093| 4.23547 | 13.82857| 0.33094
21,338 | -3.04040 | 4.76241| 20.30180| 76.39359| 2.16830
110,528 | -0.61454 | 1.97822| 6.84558 | 23.71393| 0.61727
569,434 | -0.36542 | 1.45897| 4.82940 | 16.42804 0.41847
1,290,999| -0.06074 | 0.84485| 2.41737 | 7.66346 | 0.17806
SAA 1,386 | 0.18985 | 0.60796| 1.14112 | 2.65156 | 0.02691
4,510 | 0.19369 | 0.59594| 1.10786 | 2.50092 | 0.02344
26,184 | 0.19663 | 0.59314| 1.09734 | 2.44863 | 0.02228
105,992 | 0.19680 | 0.59334| 1.09820 | 2.44730 | 0.02238
186,197 | 0.19681 | 0.59332| 1.09826 | 2.44717 | 0.02238
DAA 1,386 | 0.19574 | 0.59222| 1.08442 | 2.43143 | 0.02186
4,510 | 0.19575 | 0.59272| 1.09336 | 2.44287 | 0.02240
26,184 | 0.19669 | 0.59306| 1.09695 | 2.44579 | 0.02227
105,992 | 0.19681 | 0.59332| 1.09810 | 2.44674 | 0.02237
186,197 | 0.19681 | 0.59333| 1.09825 | 2.44685 | 0.02239

[ “Exact'values | 0.1968 | 0.5933 | 1.0983 | 2.4472 | 0.0224 |

Table IV. Convergence for SA, SAA and DAA whery = (0.012634, 0.8696) is very close to the interface.

6. NUMERICAL EXPERIMENTS

In this section, we focus on the inverse problem and compare the two #mt8é and DAA. To
this end, we consider the same geometry and assess the performande stfa@gy depending on
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Figure 8. Error curves for SA, SAA and DAA whemy = (0.012634, 0.8696) is very close to the interface.

how close the dipole location is to an interface. We will show that also for thersevproblem both
approaches behaves similarly when the dipole is located far enough frortegface, but that DAA
is clearly preferable when the dipole is close to an interface. Finally, we \sduds the robustness
of DAA with respect to measurements errors.

6.1. Test 1.

This experiment consists in reconstructing the position and the polarizatithve afipole source
from boundary measurements by using the aforementioned methods witépdledocation inQ;
is far from the interface. We considered in this tegt= (0.15231, 0.24150) as dipole position and
the same polarization used in all the other capes:(—0.2425, 0.9701).

We define the percentage errefs:) ande(p,,) as follows:

e(x) = 100M and e(p,) = 10()@’
loll> Ipll2
wherex andp, correspond to the approximations ®#f andp obtained by solving the inverse

problem.

In TableV we report the localization and polarization obtained by solving the invecds#gm by
using SA in four different uniform meshes as well as the corresporgincentage errors. We also
include columns with the number of d.o.f., the value of the objective funetiom be minimized
and the CPU time for each mesh. Finally, we include the exact valyaadp in the last row of the
table.

On the other hand, in TabMl we present the same information for several iterations of DAA,
which allows us to see the evolution of this process. The behavior of éthgy can be better
appreciated in Figuresand10, which show log-log plots of the erroesx) ande(p,, ), respectively.
We observe from these two figures that both strategies lead to veryadecasults, SA being more
stable than DAA, which presents a less monotonic behavior. On the othéy ihaan be seen in
TablesV andVI that in this case SA is less expensive.

Figure1l shows some of the successively refined meshes created in the processg DAA.
Figure12 shows two zooms around the singularity of the finer mesh in Figjlwr&he second figure
is a 200% zoom and the third one is an 800% zoom of the first one. In thigglaist the evidence
of the process of search generated by DAA can be appreciated bycHimloof the points around
which the adaptive process leads to refinement.
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d.o.f. x e(x) joR e(p,) | ¥(x) | CPUtime
362 | (0.1524,0.2509) 3.30 | (-0.2437,0.9784) 0.83 | 0.040| 19.37
829 | (0.1520,0.2453) 1.33 | (-0.2426,0.9718) 0.17 | 0.012| 37.78

1,879 (0.1524,0.2431) 0.58 | (-0.2426,0.9710) 0.08 | 0.006| 48.69

4,180 | (0.1519,0.2427) 0.45 | (-0.2425,0.9706) 0.04 | 0.003| 185.13

H Exact\(0.1523,0.2415] - \(-0.2425,0.9701] - \ - ‘ - H

Table V. Test 1. Results obtained by solving the inverse Ipmbwith SA: localization, polarization,
percentage errors, objective function and CPU time (insasp

Iteration | d.o.f. x e(x) Do e(p,) | ¥(x) | CPUtime
1 362 | (0.1623,0.2513) 4.90 | (-0.2318,0.9780) 1.33 | 0.101 8.36
5 595 | (0.1508,0.2535) 4.25 | (-0.2436,0.9789) 0.88 | 0.048| 71.86

10 1,847 (0.1509,0.2442) 1.07 | (-0.2418,0.9711) 0.11 | 0.016| 203.30
15 4,380 | (0.1518,0.2425) 0.39 | (-0.2423,0.9697) 0.05 | 0.008| 520.08

I Exact [ (0.1523,0.2415] - [ (-0.2425,0.9701]) - [ - ] - I

Table VI. Test 1. Results obtained by solving the inverseblem with DAA: localization, polarization,
percentage errors, objective function and CPU time (insasp
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Figure 9. Test 1. Percentage error curves for the locatizatj of the solution of the inverse problem by
using SA and DAA.

6.2. Test 2.

This experiment is totally similar to Test 1. The only difference is the positionefithole source
in 3, which now is taken very close to the interface with. We used the same dipole position
as in Sectiont: xy = (0.012634,0.8696). The polarization is the same as in the experiment above:
p = (—0.2425, 0.9701).

We report in Table¥/Il andVIIl and Figuredl3 and14 the same information as in the previous
test. In this case, it can be clearly seen that the performance of DAA i§isagnly better than that
of SA. In fact, for the latter, no convergence can be appreciated éopoharizationp. In its turn
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Figure 10. Test 1. Percentage error curves for the polésizat of the solution of the inverse problem by
using SA and DAA.
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Figure 11. Test 1. Meshes obtained in the process driven b4.DA

iter=12, d.o.f.=1,935
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Figure 12. Test 1. Meshes obtained in the process driven by.3#iccessive zooms of the mesh for iter=13.

the locationzy can be computed with a percentage error of around 1% on a rathee coash,
although this cannot be improved with finer meshes. Instead DAA behaeesiich more stable
way and allows us to compute batly andp with significantly smaller errors.

Figure 15 shows a zoom of the domain in which we report some successive positighs a
polarizations obtained by means of DAA. We also include the exgendp. The number nearby
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each point corresponds to the iteration number. Let us remark that thre efrall the localization
shown in this zoom are smaller than 2.5%.

As a consequence of these two tests we can assert that DAA is cleddygie when the dipole
is located close to an interface. Moreover, in such a case SA even faitgverge. On the other

hand, when the dipole is far from an interface, although SA exhibits a lpstésrmance, DAA is
fairly stable and leads to competitive results.

d.o.f. T e(x) Do e(py) | ¥(x) | CPUtime
362 | (0.0186,0.8518) 2.16 | (-0.2531,-0.0219) 99.21 | 0.0720| 30.84
829 | (0.0679,0.8673) 6.36 | (1.1304,0.4758)| 145.92| 0.0236| 25.20

1,879 (0.0138,0.8632) 0.75 | (-0.1624,0.4771)| 49.95 | 0.0092| 54.62

4,180 (0.0114,0.8633) 0.74 | (-0.2537,-0.0720) 104.22| 0.0104| 104.04

9,417 | (0.0096,0.8645) 0.68 | (-0.2310,0.0169)| 104.22| 0.0040| 479.41

| Exact] (0.0126,0.8696] - [ (-0.2425,0.9701)] - [ - | - |

Table VII. Test 2. Results obtained by solving the inversebfgm with SA: localization, polarization,
percentage errors, objective function and CPU time (insgégp

Iter. | d.o.f. x e(x) j e(p,) | ¥(x) | CPUtime
1 362 | (0.0210,0.7915)| 9.03 | (-0.2585,1.0222) 5.44 | 0.213 8.52

5 521 | (-0.0007,0.8644) 1.64 | (-0.2464,0.9953) 2.55 | 0.081| 53.77
10 | 1,013| (0.0132,0.8676)| 0.24 | (-0.2430,0.9817) 1.16 | 0.020| 146.60

[ Exact | (0.0126,0.8696) - | (-0.2425,09701) - | - | - |

Table VIII. Test 2. Results obtained by solving the inversebem with DAA: localization, polarization,
percentage errors, objective function and CPU time (insasp
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Figure 13. Test 2. Percentage error curves for the locaizai, of the solution of the inverse problem by
using SA and DAA.
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Figure 14. Test 2. Percentage error curves for the pol@sizat of the solution of the inverse problem by
using SA and DAA.
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Figure 15. Test 2. Some of the successive positions andipatians obtained by means of DAA.

6.3. Test 3.

We must have in mind that, in problems like this, the measurements are alwagtedftey
errors. For this reason, it is important to analyze the robustness of dpeged method when
the data is subjected to noise. With this aim, we have repeated the experimexst & But with
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the measurements perturbed by uniformly distributed errors with a maximum fs& of the
maximum value of the data. This amounts to an average relative error ofchi@%. We report the
obtained results in TableX. We observe that these measurement errors produce percent@age err
of 1.83% and 3.67% in the determination of the localizatigrand the polarizatiop, respectively,

on the finer meshes obtained with DAA.

Iter. | d.o.f. x Do e(x) | e(p,)
1 362 | (0.0210,0.7915) (-0.2881,0.9963) 9.03 | 5.26
5 511 | (0.0242,0.8538) (-0.2818,0.9752) 2.25 | 3.96

10 | 1,222 (0.0225,0.8572) (-0.2784,0.9624) 1.83 | 3.67

| Exact | (0.0126,0.8696) (-0.2425,0.9701) - | - |

Table IX. Test 3. Results obtained by solving the inversélem with DAA using perturbed measurements
with 5% maximum error size.

In order to study how the method depends on the size of the measurenoesitwe have repeated
the previous experiment using different maximum error sizes: 1%, 5% @¥%dof the maximum
value of the measurements. We plot all the error curves:foon Figurel6 and forp on Figure
17. To allow for comparison, the figures also include the data “0%” cormedipg to the problem
without measurement errors. Finally, Takleshows the percentage error in the determinatian,of
andp on the finest mesh for the different maximum error sizes.
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10" - i ] ) -e-1% 1
* 5%
-+ 10%

error

10" |

10 :
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Figure 16. Test 3. Comparison between percentage erroestiov the localizatiorr obtained by solving
the inverse problem with DAA using perturbed measuremeittsdifferent maximum error size.

Measurement errors 0% 1% 5% 10%
o error 0.24% | 0.74% | 1.83% | 8.26%
p error 1.16% | 1.19% | 3.67% | 5.28%

Table X. Test 3. Percentage errors in the determinatiaey&ndp on the finest mesh computed with DAA
using perturbed measurements with different maximum esiger.
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Figure 17. Test 3. Comparison between percentage erroestiov the polarizatiom obtained by solving
the inverse problem with DAA using perturbed measuremeittsdifferent maximum error sizes.

7. CONCLUSIONS

We have analyzed two approximation methods for the inverse problem afoglecephalography:
subtraction approach (SA) on uniform meshes and direct approachadéthtivity (DAA). The
study was done in a 2D framework, but the conclusions remain valid for8Blgms as well.

We observed in the forward problem that both strategies are stable waelipthle position is
sufficiently far from an interface. However, when the dipole is close tmtanface, SA may yield
unstable solutions. Instead, DAA does not exhibit such a behaviorefidre, we presume that the
latter is a better candidate to be used for solving the inverse problem.

From the experimental evidence we conclude that both methods yield srcesalts for the
inverse problem when the dipole is far from the interfaces. Insteady wigedipole is close to an
interface, SA leads to reasonable results with respect to the dipole positiofoosufficiently fine
meshes, whereas in all the numerical experiments the approximation of thezgtada is quite
inaccurate. In the case of DAA the approximation of both, location andipatan are thoroughly
satisfactory. Finally, our experimental results allow us to conclude that BA#robust strategy
with respect to measurement errors to solve the inverse problem, too.

The main advantage of DAA with respect to SA is the fact that it uses aéfptreated meshes
that are appropriate to deal with the singular character of the solutiorp®liminary experiments
seem to show that adaptively refined meshes could be useful for SAThi®.fact opens the
possibility of designing an error indicator for SA and creating an adagtiheme based on this
approach.
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