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The BTZ black hole as a Lorentz-flat geometry
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It is shown that 2+1 dimensional anti-de Sitter spacetimes are Lorentz-flat. This means, in
particular, that any simply-connected patch of the BTZ black hole solution can be endowed with
a Lorentz connection that is locally pure gauge. The result can be naturally extended to a wider
class of black hole geometries and point particles in three-dimensional spacetime.
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Since its discovery, the Bañados-Teitelboim-Zanelli
(BTZ) black hole solution in three-dimensional spacetime
[1] has been a source of surprise. The BTZ black hole
shares all the features of the more realistic 3 + 1 coun-
terparts, such as the existence of an event horizon that
surrounds the central singularity, its formation by col-
lapsing matter, the emission of Hawking radiation consis-
tent with thermodynamics, and the relation between en-
tropy and the area of the horizon, among others. On the
other hand, the enormous simplification resulting from
the absence of propagating degrees of freedom in 2 + 1
dimensions makes it an ideal laboratory to test gravita-
tion theory in a lighter setting [2].
In this note we show that the geometry of this space-

time has another exceptional feature: any simply con-
nected patch U of it is parallelizable with respect to a
Lorentz connection. This means that U can be covered
with a family of locally inertial frames (freely falling ob-
servers) so that they can all be obtained by parallel trans-
port from a given one U0, independently of the path taken
to connect them. The notion of parallelism here is the
one relevant to the Lorentz group, characterized by the
connection one-form ωa

b = ωa
bµdx

µ. This connection
defines the covariant derivative of a Lorentz vector va

with respect to the Lorentz group as [4]

Dva = dva + ωa
bv

b, (1)

and the corresponding Lorentz curvature is Ra
b :=

dωa
b + ωa

cω
c
b.

The geometry of the BTZ solution is the quotient of a
constant negative curvature manifold (AdS3) by an isom-
etry that identifies points along a Killing vector [3],

MBTZ = AdS3/ΓK . (2)

The metric of the spacetime is ds2 = −f2dt2 + f−2dr2 +
r2(Nφdt+dφ)2, where f2 = −M + r2/ℓ2+J2/(2r)2, and
Nφ = −J/(2r2). Here M is the mass, J is the angu-
lar momentum, and the coordinates have the standard
ranges, −∞ < t < ∞, 0 < r < ∞, 0 ≤ φ ≤ 2π. This

is a solution of the Einstein equations obtained from the
(2+1)-dimensional Einstein-Hilbert action with negative
cosmological constant. Varying the action with respect
to the metric, the field equations describe a manifold of
constant negative Riemann curvature,

Rαβ
µν = −ℓ−2

(

δαµδ
β
ν − δαν δ

β
µ

)

. (3)

As is well known, parallel transport of a vector (or
a frame) in a closed loop produces a rotated vector (or
frame) by a magnitude that depends on the total curva-
ture enclosed by the loop. Hence, the possibility of cov-
ering the region U with a family of parallel-transported
frames independently of the path in a consistent manner,
requires the corresponding curvature to vanish,

Ra
b(x) = 0 , ∀x ∈ U . (4)

Since the Lorentz curvature does not make any ref-
erence to the metric gµν(x), a natural question to ask
would be, what is the most general metric consistent with
a Lorentz-flat geometry? In other words, does Rab = 0
determine, or impose some constraints, on the metric of
the manifold? In order to answer this question, we can
start by defining the metric in terms of the local frame
one-forms (vielbeins), ea(x) = eaµ(x)dx

µ,

gµν(x) = ηabe
a
µe

b
ν . (5)

The vielbeins are vectors under the Lorentz group act-
ing in the tangent space, and their covariant derivative
defines the torsion two-form,

T a = Dea = dea + ωa
be

b , (6)

which is also independent of the metric. However, the
covariant derivative of the torsion must vanish, because
DT a = Ra

be
b. So, we conclude that a Lorentz-flat space-

time Ra
b = 0 can only admit a covariantly constant tor-

sion,

DT a = 0 . (7)
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Splitting the Lorentz connection into a torsion-free part
ω̄a

b and the contorsion, κa
b = ωa

b − ω̄a
b, we obtain

T a = κa
be

b . (8)

The Lorentz curvature can also be split into a purely
metric part and torsion-dependent terms,

Ra
b = Ra

b + D̄κa
b + κa

cκ
c
b , (9)

where Ra
b is the curvature for the torsion-free part of

the connection, given by the Riemann tensor as

Rab =
1

2
eaαe

b
βR

αβ
µνdx

µdxν . (10)

In 2 + 1 dimensions, the condition DT a = 0 can be inte-
grated to

T a = τǫabce
bec , (11)

where ǫabc = ηadǫdbc is the Levi-Civita anti-symmetric
invariant symbol. In (11) τ is a free integration parame-
ter and therefore the value of the cosmological constant
is not fixed and can take any non-positive value. From
this last expression, the contorsion can be identified as
κa

b = −τǫabce
c. Using this expression in (9) yields

Rab = Rab + τ2eaeb. (12)

In other words, a spacetime with vanishing Lorentz cur-
vature corresponds to an anti-de Sitter (τ 6= 0) or flat
(τ = 0) Riemannian geometry, where ℓ = 1/τ is the
radius of curvature. The origin of the sign in the cosmo-
logical constant can be easily traced to the Lorentzian
signature. In fact, in a Euclidean space, the result (12)
would have produced Rab = τ2eaeb, which could be rec-
ognized as a result of the Adams-Hopf theorem [5]: the
three-sphere is parallelizable, namely, it can be endowed
with a globally trivial SO(3) connection. Equivalently,
the statement that AdS3 is Lorentz-flat is just the con-
tinuation to Lorentzian signature of the Adams-Hopf re-
sult. Since the Adams-Hopf theorem establishes that S7

is parallelizable, one should expect that some interesting
covariantly constant torsion geometries would also exist
in AdS7.
Now, since 2+1 black holes for any M and J are ob-

tained by an identification of AdS3, all of them are locally
Lorentz-flat. In fact, this feature can also be extended
to other locally AdS3 solutions, like the naked singular-
ities obtained by identifications that produce a conical
singularity [6] and that correspond to the negative mass
spectrum of the BTZ solution, −1 < M < 0.

Other local Lorentz flat black hole solutions can be
constructed in the presence a locally flat but globally
nontrivial gauge connection. This is the case, for instance
in the vacuum sector of some supersymmetric Chern-
Simons theories that include the U(1) [7, 8], or SU(2)
[9] connections. Those solutions, for particular values
of the parameters, are configurations admitting gobally
defined Killing spinors and therefore define stable BPS
ground states.
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